Rotating Disc Electrode

Chemicals and Instruments

N₂-purged aqueous solution of 0.15 M K₄Fe(CN)₆ and 0.015 M K₃Fe(CN)₆ in 0.5 M KOH N₂-purged aqueous solution of 0.15 M K₄Fe(CN)₆ and 0.0075 M K₃Fe(CN)₆ in 0.5 M KOH Cell with rotating platinum disk electrode and controller Pt wire counter electrode Ag/AgCl/KCl(sat'd) reference electrode Potentiostat

Mass-Transport Limited Reactions (B&F Chapter 9)

Task

Determine the diffusion coefficient for the $Fe(CN)_6^{3-}$ ion and the exchange-current density for the $Fe(CN)_6^{3-/4-}$ system.

Fundamentals

In many electrochemical reactions, the rate of reaction is not limited by the charge-transfer step, but by slower steps, for example, transport of reactants to the electrode. If a mathematical treatment is available that enables the calculation of the mass-transport effects, then those effects can be eliminated from the experimental data, allowing the study of the charge-transfer step. There are a few systems where such a mathematical treatment is available; one of these systems is the rotating disc electrode (RDE).

For the RDE, the Koutecky-Levitch equation describes the relationship between the current and the angular velocity of the electrode:

$$\frac{1}{i} = \frac{1}{i_k} + \frac{1}{0.62nFAD_o^{2/3}\omega^{1/2}\nu^{-1/6}C_o^*}$$

Where i_{K} represents the current in the absence of any mass-transfer effects, D_{0} is the diffusion coefficient of the oxidized species, ω is the angular velocity of the electrode, F is Faraday's constant, A is the area of the electrode, ω is the angular velocity of the RDE (rad/s), v is the kinematic viscosity of the electrolyte, and C_{O}^{*} is the concentration of the oxidized species in the bulk. Thus, a plot of $\omega^{-1/2}$ versus i⁻¹ is linear, and by doing a linear regression, the values of the two coefficients can be obtained.

Procedure

Purge the electrolytes with nitrogen. Collect a cyclic voltammogram (CV) for the system at a scan rate of 100 mV/s in the potential range of -100 mV to 700 mV. You should see a reversible wave (i.e., anodic and cathodic peaks of the same size).

Ch117 – Electrochemistry Laboratory 2

Next, record several CVs for the system at a scan rate of 20 mV/s as a function of rotation rate. Suggested rates of rotation are 200 – 2500 rpm.

Work-Up and Questions

- 1) Determine the limiting current as a function of rotation rate and construct a graph of $\omega^{-1/2}$ versus i^{-1} .
- 2) Use linear regression to determine the values for i_k and D_0 , assuming $v = 1.0074 \times 10^{-6} \text{ m}^2 \text{s}^{-1}$ for these solutions.