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b The theory of stationary electrode 
polarography for both single scan 
and cyclic triangular wave experi- 
ments has been extended to systems 
in which preceding, following, or 
catalytic (cyclic) chemical reactions are 
coupled with reversible or irreversible 
charge transfers. A numerical method 
was developed for solving the integral 
equations obtained from the boundary 
value problems, and extensive data 
were calculated which permit con- 
struction of stationary electrode polaro- 
grams from theory. Correlations of 
kinetic and experimental parameters 
made it possible to develop diagnostic 
criteria so that unknown systems can be 
characterized by studying the varia- 
tion of peak current, half-peak poten- 
tial, or ratio of anodic to cathodic 
peak currents as a function of rate 
of  voltage scan. 

TATlONARY ELECTRODE POLAROG- S RAPHY (6) (voltammetry with 
linearly varying potential) has found 
wide application in analysis and in the 
investigation of electrolysis mechanisms. 
For analysis, the method is more 
sensitive and faster than polarography 
with the dropping mercury electrode 
(37), and when used with stripping 
analysis, can be extended to trace 
determinations (7, 17, 46). In studying 
the mechanism of electrode reactions, 
the use of stationary electrodes with a 
cyclic potential scan makes i t  possible to 
investigate the products of the electrode 
reaction and detect electroactive inter- 
mediates (10, 11, 18). Furthermore, 
the time scale for the method can 
be varied over an extremely wide range, 
and both relatively slow and fairly 
rapid reactions can be studied with a 
single technique. Various electrodes 
have been used in these studies, but the 
most important applications have in- 
volved the hanging mercury drop 
electrode [reviewed by Kemula (16) 
and Riha (SS) ] ,  and the dropping 
mercury electrode [reviewed by Vogel 
(50) I .  

Since the first application of the 
method by hfatheson and Kichols (H), 
numerous investigators have con- 

tribu'ted to the theory of stationary 
electrode polarography. The first were 
Randles (29) and Revcik (44)  who con- 
sidered the single scan method for a 
reversible reaction taking place a t  a 
plane electrode. The theory was 
extended to totally irreversible charge 
transfer reactions by Delahay (4 ) ,  and 
later, Matsuda and Ayabe (23) re- 
derived the Randles-Sevcik reversible 
theory, the Delahay irreversible theory, 
and then extended the treatment to the 
intermediate quasi-reversible case. 
Other workers also have considrred both 
reversible (13, 22, 32, 36) and totally 
irreversible (12, 32) reactions taking 
place a t  plane electrodes. 

In  addition, the theory of the single 
scan method has been extended to 
reversible reactions taking place a t  
cylindrical electrodes (25) and a t  
spherical electrodes (9, 31, 32, 36). 
Totally irreversible reactions taking 
place a t  spherical electrodes (8, 32) also 
have been discussed. Further contribu- 
tions to the theory have included 
systems in which the products of the 
electrode reaction are deposited on an 
inert electrode (2)  ; the reverse reaction, 
involving the dissolution of a deposited 
film ($6) ;  and systems involving 
multi-electron consecutive reactions, 
where the individual steps take place a t  
different potentials (14, 16). 

Even in the case3 involving reversible 
reactions a t  plane electrodes, the 
theoretical treatment is relatively dif- 
ficult, ultimately requiring some sort 
of numerical analysis. Because of this, 
the more complicated cases in which 
homogeneous chemical reactions are 
coupled to the charge transfer reaction 
have received little attention. Saveant 
and Vianello developed the theory for 
the catalytic mechanism (39), the 
preceding chemical reaction (38, @), 
and also have discussed the case 
involving a very rapid reaction 
following the charge transfer (40). 
Reinmuth (32) briefly discussed the 
theory for a systeni in which a first 
order chemical reaction follows the 
charge transfer. 

The mathematical complexity also has 
prevented extensive study of the cyclic 
triangular wave methods, in spite of the 

value of this approach. Sevcik (44) 
qualitatively discussed the method for 
reversible reactions a t  a plane electrode 
under steady state conditions-Le., 
after many cycles when no further 
changes in the concentration distribu- 
tions take place in the solution from 
one cycle to the next. Later Matsuda 
(22) presented the complete theory for 
this multisweep cyclic triangular wave 
method, for a reversible reaction a t  a 
plane electrode. The only other con- 
tributions to the theory of cyclic 
methods were those of Gokhshtein (13) 
(reversible reactions), Koutecky (19) 
(reversible and quasi-reversible re- 
actions), and Weber (51) (catalytic 
reactions). A generalized function of 
time was included in each of these 
derivations. which thus could be ex- 
tended to cyclic triangular-wave voltam- 
metry. In the last two papers, however, 
the case actually considered was for a 
cyclic step-functional potential varia- 
tion. 

Because of the increased interest in 
stationary electrode polarography, it 
has become important to extend the 
theory to include additional kinetic 
cases. Furthermore, many of the 
recent applications of cyclic triangular 
wave voltammetry have involved only 
the first few cycles, rather than the 
steady state multisweep experiments. 
Therefore, a general approach was 
sought, which could be applied to all 
these cases. In considering the 
mathematical approaches of other 
authors, a t  least three have been used 
previously : applications of Laplace 
transform techniques, direct numerical 
solution using finite difference tech- 
niques, and conversion of the boundary 
value prohlem to an integral equation. 

The first approach is the most elegant, 
but is applicable only to the simplest 
case of a reversible charge transfer 
reaction (2, 19, 31, 35, 44, and also to 
the catalytic reaction (51) .  Even in 
these cases, definite integrals arise which 
can only be evaluated numerically. 

The second approach (8, 9,  25, 29) is 
the least useful of the three, because 
functional relations which may exist 
between the experimental parameters 
are usually embodied in extensive 
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numerical tabulations and are often 
missed. Thus, the rcsults may depend 
on an extremely large number of 
variahles. This is particularly so in the 
more complicated cases involving 
coupled chemical reactions, which may 
require the direct simultaneous solution 
of three partial diffwential equations 
together \iith thrpe initial and six 
boundary conditions. 

The third method possesses the 
advantages of the first, and yet is more 
generally applicable Several methods 
can he used to convert the boundary 
va!ue problem to an integral equation 
(%), and a t  least two methods of 
solving the resulting integral equations 
havc been used. The series solution 
proposed by Reinmuth (32) is very 
straightforward. but only in cases 
involving totally irceversible charge 
transfer does it provide a series which 
is properly convergent over the entire 
potential range. [This approarh to 
obtaining series solutions is essentially 
the same as used by Smutek (47) for 
irreversible polarographic waves. Series 
solutions of the same form can also be 
obtained directly from the differential 
equations, as was shown recently by 
Buck ( S ) ] .  Reinniuth has outlined a 
method for evaluating these series in 
regions where they are divergent (SS), 
but attempts to use that approach in 
this laboratory (with a Bendix Model 
G-15 digital computw) produced er- 
ratic results. 

The methods most frequently used 
for solving the integral equations have 
been numerical 14, I i? ,  13, L2, 23, 26, 
39) and an adaptation of the approach 
suggested by Gokhshtein (13) was used 
in this work. The r e t h o d  which was 
developed is generally applicable to  all 
of the cases nientioned above, all 
additional first order kinetic cases of 
interest, and both single scan and cyclic 
triangular wave experiments. Except 
for reversible. irreversible, and catalytic 
reactions, the treatmmt is limited to 
plane electrodes because of the marked 
increase in compleuity of the theory for 
most of the kinetic cas=s if an attempt is 
made to account for spherical diffusion 
rigorously. Conditions under which 
derivations for plane alectrodes can be 
used for other geomitries have been 
discussed by Berzins ,tnd Delahay (2) .  
An empirical approach to making ap- 
proximate corrections for the spherical 
contribution to the current will be 
described elsewhere. The cases con- 
sidered here all invol Je reductions for 
the first charge transfer step, but 
extension to oxidationtr is obvious. 

To present a logica discussion, each 
of the kinetic cases wa'; compared to the 
corresponding reversikde or irreversible 
reaction which rvould tzke place without 
the kinetic compliration. Thus, it was 
necessary to inc!ude in this work a 
substantial discussior of these two 

Figure 1 .  Wave form for cyclic tri- 
an gular wave vo I t a mme t ry 

cases, in spite of the extensive previous 
work. However, this makes it possible 
to discuss the numerical method pro- 
posed here in terms of the simplest 
possihle case for clarity, and a t  the 
same time summarizes the widely 
scattered previous work in a form which 
is most convenient for comparison of 
experimental results with theory. 

I. REVERSIBLE CHARGE TRANSFER 

Boundary Value Problem. For a 
reversible reduction of an  oxidized 
species 0 to a reduced species R, 

O + n e G R  (1) 
taking place a t  a plane electrode, the 
boundary value problem for stationary 
electrode polarography is 

dC0 d2CO 
dt d X  
- = D o - ,  

DO (z) = -DE (2) (5a) 

CO/CR = exp[(nF/RT)(E - E")] 
(5b) 

where Co and CR are the concentrations 
of substances 0 and R, z is the distance 
from the electrode, t is the time, Co* 
and CR* are the bulk concentrations of 
substances 0 and R, DO and DR are 
the diffusion coefficients, n is the 
number of electrons, E is the potential 
of the electrode, E' is the formal 
electrode potential, and R, T, and F 
have their usual significance. The 
applicability of the Fick diffusion 
equations and the initial aiid boundary 
conditions has been discussed by Rein- 
muth (33). 

For the case of stationary electrode 
polarography* the potential in Equation 
5b is a function of time, given by the 
relations 

O < t < A  E = E , - v t  ( 6 4  
X 6 t :  E = E, - 2vX + z;t (6b) 

where Ei is the initial potential, o is the 
rate of potential scan, and A is the time 
a t  which the scan is reversed (Figure 1). 

Equations 6a and 6b can be sub- 
stituted into Equation 5b to obtain the 
boundary condition in an abridged 
form: 

cO/CR = esxw (7)  
where 

0 = exp[(nF/RT)(E, - E')] (8) 

and 

a = nFv/h!T (10) 
If t is always less than A, then Equation 
7 reduces to 

Co/CR = (11 )  
which is the same boundary condition 
that has been used previously for 
theoretical studies of the single scan 
method for a reversible charge transfer. 

The direct use of the Laplace trans- 
form to solve this boundary value 
problem is precluded by the form of 
Equation 7 .  However, the differential 
equations can be converted into integral 
equations by taking the Laplace trans- 
form of Equations 1 to 4, solving for 
the transform of the surface concentra- 
tions in terms of the transform of the 
surface fluxes, and then applying the 
convolution theorem (33) : 

where 

The boundary condition of Equation 
7 now can be combined with Equations 
12 and 13, to eliminate the concentra- 
tion terms and obtain a single integral 
equation, which has as its solution the 
flux of substance 0 a t  the electrode 
surface : 

where 

Referring to Equation 10, i t  can be 
noted that the term at is dimensionless 

at = nFut/RT = (nF/RT)(E; - E )  
(17) 

and is proportional to the potential. 
Since the ultimate goal is to  calculate 
current-potential curves rather than 
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Table 1. Current Functions &x(at) for Reversible Charge Transfer (Case I) 
( E  - E ~ d n  

mv. 
120 
100 
80 
60 
50 
45 
40 
35 
30 
25 

V%x(at) 
0.009 
0.020 
0.042 
0.084 
0.117 
0.138 
0.160 
0.185 
0.211 
0.240 

( E  - E d n  
+(at) mv. 
0.008 - 5  
0.019 10 
0.041 15 
0.087 20 
0.124 25 
0.146 -28.50 
0.173 30 
0.208 35 
0.236 40 
0.273 50 

20 0.269 0.314 - 60 
15 0.298 0.357 80 
10 0.328 0.403 100 

& x ( 4  +(at) 
0.400 0.548 
0.418 0.596 
0.432 0.641 
0.441 0.685 
0.445 0.725 
0.4463 0.7516 
0.446 0.763 
0.443 0.796 
0.438 0.826 
0.421 0.875 
0.399 0.912 
0.353 0.957 
0.312 0 ,980  

5 0.355 0.451 120 0.280 0.991 
0 0.380 0.499 150 0.245 0.997 

To calculate the current: 
(1) i = i(p1ane) + i(spherica1 correction). 

1321 = n F A d X o C o *  d & ( a t )  + nFADoCo*(l/r,)+(at) 
= 602 n3 '2A. \ /~X C o * [ d / , d a t )  + 0.160(.\/Do/ro.\//nv)d(at)l. amueres. . . I -. I . - , . .  ,., 

Units for (3) are: A ;  s q  cm.; Do, sq. cm./sec.; v ,  volt/sec.; Co*, molei/liter; ro,  cm. 

current-time curves, it  is useful to make 
all calculations with respect to at rather 
than t .  This can be accomplished by a 
change in variable 

i- = z/a (18) 

and Equation 15 becomes 

This integral equation can be made 
dimensionless (especially important if 
numerical methods are used) by the 
substitution 

g(at) = c o *  d*Doa x(at) (21) 
and the final form of the integral 
equation is: 

The solution to Equation 22 provides 
values of  at) as a function of at, for a 
given value of ye. From Equations 
5b  and 7, the values of at are related to 
the potential by 

E = E" - (RT/nF) In y + 
(RT/nF) [In ye + In S,h(at)] (234 

or 

(E  - Eidn = 
(RT/F) [In ye + In S,x(at) 1 (23b) 

where Ell2 is the polarographic half 
wave potential 

Ell2 = E" + (RT/nF) In ~ / D R / D o  
(24) 

Thus, values of  at) can be regarded 
as values of x[ (E  - E l / ~ ) n ] ,  and will 

ultimately furnish values of the current 
as a function of potential (Equations 
14, 19, 21): 

i = nF.4Co* Z / a z a  x(at) (25) 

The value8 of  at) are independent 
of the actual value of ye selected, 
provided In ye is larger than perhaps 6, 
and a formal proof has been given by 
Reinmuth (56). This corresponds to the 
usual experimental procedure of 
selecting an  initial potential anodic of 
the foot of the wave, and in effect re- 
duces the number of variables involved 
by one. 

Numerical Solution. Although 
Equation 22 has been solved in 
several ways, only the  numerical 
approaches appeared to  be readily 
applicable to  the cyclic experiment. 
The technique developed here involves 
dividing the  range of integration 
from at = 0 to at = ill into N equally 
spaced subintervals by a change of 
variable, 

z = 6v (26) 

and the definition 

n = at/6 (27) 

Here, E is the length of the subinterval 
(6 = M/N\,  and n is a serial number of 
the subinterval. Thus, Equation 23 
becomes 

dT s" x(6v) dv 1 - 
0 dnyv 1 + yeSax(8n) 

(28) 

where n varies from 0 to M in N inte- 
gral steps. The point of singularity (n 
= Y) in the kernel in Equation 28 
can be removed through an  integration 
by Farts to obtain 

The integra! on the right hand side of 
Equation 29 is a Riemann-Stieltjes 
integral, which can be replaced by its 
corresponding finite sum ( I ) .  Eliminat- 
ing the special points i = 0 and i = n 
from the summation, one obtains 

and substituting this result in Equation 
28, 

r 

L 

d n T [ x ( i  + 1) - x(i)]  = 1 n- 1 

i = l  

(31) 
1 

1 + v&&n) 
Equation 31 defines N algebraic equa- 

tions in the unknown function x(n), 
where each nth equation involves the pre- 
vious n - 1 unknown.. . These equations 
are then solved wccessively for the  
values of x(atk-i.e.,  ~ ( 8 % ) .  When 
6n 6 6x, the function Sax(8n) is 
exp(-8n), and when the point in the 
calculations is reached where 8% > 6X, 
the function is replaced by exp (6% - 
26x). In this way, single scan or cyclic 
current-potential curves can be cal- 
culated easily, and the extension to 
multicycles is obvious. 

Analytical Solution. It is also 
pmsible to  obtain an  analytical solu- 
tion to Equation 2 2 .  It is an  Abel 
integral equation ( $ 8 ) ,  and the solution 
can be written directly a? 

where L(at) represents the right hand 
side of Equation 22. Performing the 
differentiation indicated (using Equa- 
tion 11 as the boundary condition) the 
exact solution is 

x(at) = + 
dz 

1 

a d a t ( 1  + ye) 

(In - z ,  
k d u G  cosh2 

(33) 

Equation 33 has been given previously 
by Matsuda and Ayabe (25), and by 

708 ANALYTICAL CHEMISTRY 



Gokhshtein (13) .  If it is assumed that 
ye is large, Equation 33 reduces to the 
reqult obtained by Sevcik (44)  and by 
Reinmuth (35 ) ,  but such an  assumption 
is not required in thif case. ,Ilthough 
the definite integral in Equation 33 
cannot be evaluated in closed form, 
several numerical metiods (such as the 
Euler-RIaclaurin sumriation formula or 
Simpson'5 rule) can t e  used, provided 
the singularity a t  at = z is first removed 
by a change of variable (23) or an 
integration by parts (35).  

If only the  single 
scan method is considered, Equation 
22 can be solved in series form, and 
although the  resulting series does not 
properly convergr for all potentials, 
the  form of the  results obtained is very 
uqeful for comparison of the  limiting 
cases obtained in the  kinetic systems. 

One possible appromh is to expand 
the right hand side of ]?quation 22 as an 
exponential power series in at, as done 
by Sevcik (44 ) .  but this cannot be done 
for most cases involving coupled chemi- 
cal reactions. T h ~ s ,  Reinmuth's ap- 
proach (32, 33) is mori1 general, and the 
final result is 

Series Solution. 

Single Scan Meihod. I n  every 
case, the  solution of Equation 22 
ultimately requires numerical evalua- 
tion which in the  past has been carried 
out  with varying accuracy. This 
hss  led t o  some unrertainty in the  
litcrature regarding the  location of 
t h e  peak potential with respect t o  

the height of the peak, the 
significance of the ha f-peak potential, 
etc. For this reason, the calculations 
were carried out (using the numerical 
solution, Equation 31) 011 an  THM 704 
digital coniputer to obtain accurate 
values of  at) as a function of potential 
(Table I). Since the hanging mercury 
drop electrode is fre(quent1y used in 
analytical work, there is also listed a 
function based oil Reirtmuth's equation 
(36), from which curreits at a spherical 
electrode can be calcuhted. The calcu- 
lations were made using a value of 
6 = 0.01. with In ye = 6.5, and are 
accurate to =kO.OOl. 'The temperature 
was ascjumed to be 25" C., and values 
for some other tenq)erature can be 
obtained by multiplying the potential 
by the factor (273.16 -I- T)/298.16 (see 
Equation 23). The factor 4, was 
iiicluded in the tabulation for con- 
venience in making c3mparisons with 
prcvious n ork. 

The reversible stationary electrode 
polarogram for a plaie electrode ex- 
hibits a maximum value of i,l(nFA 
4% CO*) = 0.4463 at a potential 

-0.4 
I I I I I 

120 0 420 -240 -360 

Figure 2. Cyclic stationary electrode 
polarogram (Case I) 
Switching potentials correspond to ( €112 -  EA)^ of 
64, 105, and 141 mv. for anodic scans 

28.50/n millivolts cathodic of Ell2,- 
Le., 
(Ep  - E")% + (RT/F) In y = 

or 
-28.50 h 0.05 mv. (35) 

E, = E112 - (1.109 =k 0.002)(RT/nF) 
(36) 

Actually, the peak of a reversible 
stationary electrode polarogram is 
fairly broad, extending over a range of 
several millivolts if va!ues of x(a t )  
are determined to about 1%. Thus, 
i t  is sometimes convenient to use the 
half-peak potential as a reference point 
(@), although this has no direct 
thermodynamic sigiiificance. The half- 
peak potential precedes Ell2 by 28.0/n 
mv., or 

Ep/Z = E1/2 + 1.09(RT/nF) (37) 
The El,* value can be estimated from 

a reversible stationary electrode polaro- 
gram from the fact that it  occurs at a 
point 85.17% of the way up the wave. 

Calculations based on Equation 33 
and also Equation 34 (at least for 
potentials anodic of Ell2) agree exactly 
with those in Table I, and these data 
can be used to construct accurate 
theoretical stationary electrode polaro- 
grams. 

Cyclic Triangular Wave Method. 
For the  first cycle, the cathodic por- 
tion of t he  polarogram is, of course, 
the  same as described above for the 
single scan method. However, the 
height and  position of t he  anodic 
portion of the  polarogram will depend 
on the  switching potential, EA, being 
used. 

Polarogrnms for various values of 
(EA - E l / J n  were calculated from 
Equation 31, and, provided that the 
switching potential is not less than 
about 35/n my. past the cathodic peak, 
the curves all have the same relative 
shape. (For switching potentials close 
to the peak, the shape of the anodic 
curve is very dependent on the switching 
potential, but this is not a usual experi- 

mental condition, and will not be con- 
sidercd further.) Typical cyclic polaro- 
grams are shown in Figure 2. By using 
for the base line the cathodic curve 
which would have been obtained if 
there had been no change in direction of 
potential scan, all of thc anodic curves 
are the same, independent of switching 
potential, and identical in height and 
shape to the cathodic wave. Thus, 
when the anodic peak height is measured 
to the extension of the cathodic curve, 
the ratio of anodic to cathodic peak 
currentq is unity, independent of the 
snitching potential. This behavior 
can be used as an important diagnoqtic 
criterion to demonstrate the absence 
(or unimportance) of the various 
coupled chemical reactions. Of those 
considered in this paper, only the 
catalytic case (which can easily be 
distinguished from the reversible case 
by other behavior) gives a constant 
value of unity for the ratio of anodic to 
cathodic peak height on varying the 
switching potential. Experimentally, 
the cathodic base line can be obtained 
by extending n single scan cathodic 
sweep beyond the selected switching 
potential, or if another reaction inter- 
feres, by stopping the wan a t  some 
convenient potential past the peak, and 
recording the constant potential cur- 
rent-time curve (using appropriate cor- 
rections for charging current) The 
latter method of obtaining the base 
line has been propos4  for analytical 
purposes by Keinmuth (34) .  

The pos;tion of the anodic a a v e  on 
thc potential axis is a function of the 
switching pntential. especia!ly for qmall 
values of (Ex -Elj2)n. This results 
from the fact that  on the cathodic scan, 
the surface concentration of substance 
R does not quite equal Co* a t  potentials 
close to the peak, and if the anodic scan 
is started under these conditions, CR 
(0, t )  is slightly less than Co(O, t )  was 
at the corresponding potentials for the 
cathodic scan. This cawrs an anodic 
shift in the Jtavc. which decreases as 
the snitching potential iq made more 
c,zthodic. The behavior is summarized 
in Table 11. 

The transition from the single cycle to 
the multicycle triangular wave method 
involves a gradual realignment of con- 
centration gradients at the same rela- 
tive potentials on successive cyclcs, 
which, in turn, causes a gradual change 
in the shape of both the anodic and 
cathodic curves. &Ifter about 50 cycles 
(44), further changes in shape are very 
slow, and essentially a steady state 
cyclic curve is obtained. Thc relations 
between the cathodic and anodic peak 
potentials, peak heights, and switching 
potentia!? for the steady state rase are 
given by Matsudn (22). Generally, 
unlesq R reacting system iq being 
studied, thew is little point in in- 
vestigating the intermediate cyclic scans 
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beyond the first and before the steady 
state is reached. Thus, although the 
individual curve3 for any number of 
cycles can be calculated from Equation 
31, only the first few have been tabu- 
lated for an arbitrarily selected value of 
Ex (27)  and copies of these da ta  are 
available on request. 

II. IRREVERSIBLE CHARGE TRANSFER 

Boundary Value Problem. For the  
case of a totally irreversible reduction 
taking place at a plane electrode 

(11) 

the boundary value problem for 
stationary electrode polarography is 
similar to the reversible case arid Equa- 
tions l, 3, 4, and 5a are applicable, 
except the terms involving substance 
R are not used. However, Equation 
5b is replaced I J ~  

k 
O + n e + R  

t > 0,  x = 0 ;  Do (%) = k  CO (38) 

Table II. Anodic Peak Potential as a 
Function of Switching Potential for 

Reversible Charge Transfer (Case I )  
(E1,* - Ei)n  [E,(anodic) - 

mv. E ~ l n  mv. 
- 65 34.4 
70 33.7 
75 33.3 
80 32.9 

- 100 32.0 
150 30.7 
200 29.8 
300 29.3 

where 

k = k,  exp[(-aala,b'/RT)(E - E " ) ]  
(39) 

and the other terms have their usual 
significance (6). In  addition, only 
Equat,ion 6a is required to describe the 
potential variation, since there is no 
anodic current on the reverse scan. 
Thus, the last boundary condition can 
be written 

bCo 
j f t )  = D o  (z) = Cokiebt (40) 

where 
k ,  = k,  exp[(-an,F/RT)(E, - E " ) ]  

(41) 

b = an,Fv/RT (42) 

Here k ,  is the rate constant a t  the 
initial potential, and b is analogous to its 
counterpart a for the reversible case. 
Using exactly the same methods 5s 
above, this boundary value problem can 
be converted to a single integral 
equation, first given by Delahay (4) 

= (eudt))x(bt) bt x(z)dz 1 - J  - 
O d b t  - z 

(43) 

where 

e u  = d/aL)ob/k, = (d /?rDob/k , )  x 
- 

exp[(an,FIRT)(E, - E " ) ]  (44) 

For a particular value of u, the solu- 
tion to Equation 43 provides values of 
x(b t )  as a function of bt, which in turn 
are related to the potential bv 

bt = (an,F/RT)(E, - E )  (45) 

Table Ill. Current Functions &x(bf) for Irreversible Charge Transfer (Case II) 

160 0.003 0 15 0.437 0.323 
140 0.008 10 0,462 0.396 
120 0.016 5 0.480 0.482 
110 0.024 0 0.492 0.600 
100 0.035 - 5  0.496 0.685 
90 0.050 0 - 5.34 0.4958 0.694 
80 0.073 0.004 10 0.493 0.755 
70 0.104 0,010 15 0.488 0.823 
60 0.145 0.021 20 0.472 0.895 
50 0.199 0.042 25 0.457 0.952 
40 0.264 0.083 - 30 0.441 0.992 _. 
35 0.300 o.ii5 35 0.423 1.00 
30 0.337 0.154 40 0.406 
25 0.372 0.199 50 0 374 
20 0.406 0.253 70 0.323 

a The potential scale is (E - Eo)an. + (RTIF)  In . \ / G / k s .  The initial potential for 
any value of u can be obtained from ( E  - Ei)ana = ( E  - Eo)an. - (RT /F) (u  - In 

To calculate the current: (1) 
(2) 

d G / k . ) .  
i = i(p1ane) + i(spherics1 correction) 

= nFA .\/a CO* .\//?rx(bt) + nFADoCo* (l/ro) @(bt )  
(3) = 602 n(an=)"'A.\/ /~~uCo*[.\ /rx(bt)  + 

0.160( .\/E~'ro.\/GZ)+(bt)] 
Units for (3) are same as Table I. 

Provided u is greater than about 7 
(which corresponds to selecting an  
initial potential anodic of the foot of 
the wave) the values of x(b t )  are 
independent of u ( 4 ) .  With respect 
to the initia! potential, however, the 
entire wave shifts along the potential 
axis as a functioii of u. Experimentally, 
the initial potential is a convenient 
reference point, since E" is seldom 
known for a totally irreversible system, 
and data calculated for a particular 
value of u can be used for any initial 
potential by arbitrarily shifting the 
potential axis. For tabulation of data, 
however, it is mnre convenient, to 
define a potential axis which will be 
independent of an arbitrary function 
such as u, and this can he done by 
utilizing the relation 

( E  - Eo)an, + 
(RTIF)  ln(d\/RDob/kJ = 

(RT /F) (u  - bt) (46) 

Thus values of x(b t )  can be used to 
calculate the current 

- 
i = 1~F-lCo* d/?rDob x(bt)  (47) 

as a funrtioii of the potential, which in 
turn iq defined by the left-hand qide 
of Equation 46. F:qiintion 43 is a 
Volterra integral equation of the second 
kind and was evaluated numerically 
by Delahay ( 4 )  and also by Matsuda 
and Ayabe (23). The numerical ap- 
proach described in this paper also is 
applicable. In  addition, a series solution 
has been reported (32) 

The series in Equatioii 48 is strictly 
applicable only for values of bt 3 4-i.e., 
potentials about 100 'an, iiiillivolts 
cathodic of the initial potential. This 
is not a qerious restriction, and the 
series is properly convergent m e r  the 
entire range of interest. Although 
the series convergw very slon 1y near the 
peak of the wave, Equation 48 is 
probably the best nay  to calculate the 
current. Since precise values of x(bt) 
have not been published previously, 
Equation 43 was evaluated using the 
numerical niethod, and in addition, 
values of x(bt1 were calculated from 
Equation 48. The results (Table 111) 
were identical and agreed ne11 with the 
less accurate data previously prescnted 
by Delahay ( 4 )  and Matsuda and Ayabe 
(23) .  These values of ~ ( b t )  were cal- 
culated usinq 6 = 0.01, with u = 7.0, 
and are accurate to +0.001. 
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Table IV. Boundary Value Problems for Stationary Electrode Polarography with Coupled Chemical Reactions 

I Reaction 

5 
Tbo 

III 
O + n e t R  

Z 9 0  
IX kb 

k O +  ne -R 

Y 
R 2 Z  

kb 

R 9 Z  

O + n s = R  

i,cR alcR 
DR dx' --= 

at 

I~c,, a%, Equation 3 Equation 4 Equations Sa and 7 
--=DRF at - kf Cn - 

Same as 
Same as S a m  as 

(a) Equation 4 (a) Equation 3 

S a m  as 

Equation 40 

Q Sincme the charge transfer is totally irreversible, those equations involving substance R are not used. * Since the chemical reaction is irreversible, the equations involving substance Z are not used. 

Experimental Correlations. The 
relation between tEe peak potential 
and the other expwimental param- 
eters can be derived "rom Table I11 

(E,  - E")an,  + -- 
(RTIF)  In 2 / r D o b l k ,  = -5.34 mv. 

(49) 
which can be rearranged to obtain 

E, = E" - (RT/an, ,F)(0.780 4- 
In 2 / z b  - Ink,) (50) 

This u as first derived by Delahay (4, 6) 
(but note typographi1:al error) and later 
by Matsuda and Ayabe (23).  The 
half-peak potential also can be used as 
a reference point, and from Table 111 

(Ep/* - €?")an, + ( I t T / F )  
In l/?rDob/k, == 42.36 mv. (51) 

Thus, 

E, - E,iz = -l .85'7(RT/anaF) (52) 
From Equations 50 and 52, both the 

peak potential arid the half-peak 

potential are functions of the rate of 
potential scan 

(Ep,2)2 - (Ep,2)1 = (E,)Z - (Ed1 = 

( R T / ~ ~ , F )  In 2/v& (53) 

and thus, for a totally irreversible wave, 
there is a cathodic shift in peak potential 
or half-peak potential of about 30/an, 
niillivolts for each ten-fold increase in 
the rate of potential scan. 

An alternate form of Equation 50 
also can be derived by combining 
Equations 40, 44, and 45 with the value 
of x(bt)  a t  the peak, to obtain 

(Co),/Co* = x ( b t ) p  X 

(-an,F/RT)(E, - E" + 
RT an,F In 2 / x b / k , ) ]  = 0.227 (54) 

This result does not depend on the 
other experimental parameters (such 
as u )  and Equation 54 can be solved for 
the surface concentration of substance 
0 at, the peak. This can be substituted 

into the Egring equation for ft totally 
irreversible reaction (6) to obtain 
a result first derived by Gokhshtein (12) 
(with a slightly higher ccnstant) : 

i, = 0.227 nFACo* k ,  X 
exp [(-an,F/RT)(E, - E " ) ]  (55) 
Thuq. a plot of ln(i,) 21s. E, - E" 

(or E,,? - E") for different scan rates 
would be a straight line with a slope 
proportiona! to  ana, and an intercept 
proportional to k,. This appears to be 
an extremely convenient method of 
determining the kinetic parameters for 
thiq case, although the scan rate would 
have to be varied over several orilers of 
magnitude. 

Still another approach to obtaining 
kinetic information from Gtationary 
electrode polarograms &as drscribed by 
Keinmuth (SO) who showed that for an 
irreversible reaction, the current floaing 
at  the foot of the wave is independent 
of the rate of voltage scan. This same 
conclusion can be drawn by combining 
Equations 46 to 48, and considering the 
first few terms of the series 
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i = nFACo* d r z b  [ebt-" - 
Z/,ez(*'-'') + . . . ]  (56) 

The current will be independent of v 
[note definition of exp (u ) ,  Equation 441 
when the second term is small com- 
pared to the first, or to the 501, error 
level, when & exp (6t - u )  < 0.05. 
This condition holds for values of 
-&x(bt) less than about 0.05, or 
about 10% of the peak value. Thus, the 
range of applicability of this useful 
criterion of irreversibility does not 
extend as high along the wave as implied 
by Reinmuth (SO). For those cases 
where the second term can be dropped, 
however, Equation 56 reduces to 

i = nFACo*k, x 
exp [(-cm,F/RT)(E - EL)] (57) 

and offers a simple way of obtaining 
kinetic data. 

Spherical Electrodes. For an  ir- 
reversible reaction taking place a t  a 
spherical electrode, Reinniuth was 
able to  derive a series solution which is 
convergent over the entire potential 
range of interest ($2). Unfortunately, 
it is not possible to separate the spherical 
correction term from the expression for 
the plane electrode as for the reversible 
systeni (Case I). Since the series 
converges very slowly a t  potentials near 
the peak, making the use of a computer 
almost mandatory, an alternate means 
of expressing the spherical contribution 
to the current was sought. A large 
number of curves were calculated, and 
the spherical correction-Le., the dif- 

ference between the current obtained 
at spherical and plane electrodes of the 
same area under identical conditions- 
was plotted as a function of the di- 
mensionless parameter l / D O / ( T O d b )  
where ro is the radius of the electrode. 
The plot was linear (to better than 1%) 
for values of d&'(ro2/b-j less than 
0.1. Since this includes all values 
which are of practical use, an irreversible 
spherical correction term, +(bt)  was 
evaluated which can be used just as the 
analogous term for the reversible case. 
Thew values of $(6 t j  are listed in 
Table 111, and values of the current 
calculated in thi3 way agree well with 
the considerably less conyenient data 
presented previously (8) .  

COUPLED CHEMICAL REACTIONS 

If a homogeneous chemical reaction is 
coupled to the charge transfer reaction, 
stationary electrode polarography pro- 
vides an extremely powerful method of 
investigating the kinetic parameters. 
Several of the important kinetic 
systems are discuqsed in this work, in- 
cluding those which involve first order 
(or pseudo first order) preceding, fol- 
lowing, or catalytic chemical reactions. 
Several other cases, including the 
chemical reaction coupled between two 
charge tranqfer reactions, have also 
been considered, and will be presented 
elsewhere. 

For each of the kinetic cases, the 
boundary value problem was formulated 
in a manner similar to Case I or Case 

I1 (depending on the nature of the 
charge transfer reaction) but modified to 
reflect the kinetic coniplication. These 
boundary value problems are presented 
in Tahle IV. In  each case the rate 
constant is first order or pseudo first 
order-e.g., in Cases VI1 and VI11 i t  
was assumed that Cz >> Co, and the 
rate constant which was used In the cal- 
culations nas k ,  (=  kf'Cz). Using the 
same procedure as outlined in Equations 
12 through 22, each of these boundary 
value problems was converted to  a 
rzinple integral equstion. Hot? ever, in 
all the kinetic cases except Case VI, at 
least one of the differential equations 
involved tJ+o concentration variables. 
Thuq, in order to simplify the problem, 
the usual changes in variable nere made 
(90) ' 

The integral equation obtained for 
each caqe is presented in Table T'. -411 
terms in thme equations have been de- 
fined previously, except K ,  irhich is the 
equilibrium constant for the chemical 
reaction, and 1 which is the Bum of the 
rate constants ( k ,  + kb).  Each of these 
integral equations nas  then solved 
nunierically using the approach de- 
scribed in Equations 26 to 31. Only 
two different kernels are involved in all 
the integral equations, and once the 
procedures nere worked out for one 
rase, they could be extended readily to 
the other cases. 

These numerical results (presented in 
the various tables) provided values of 
the current functions  ut) or ~ ( b t )  
which could be related to potential by 
Equations 23 and 24 for reversible 
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charge transfers, and Equations 45 and 
46 for irreversible charge transfers. 

In each case, the inlegral equation was 
made dimensionless by the same sub- 
stitution (Equation 21), and as a result, 
the current a h  ays can be calculated 
from the current fun( tion  at) or ~ ( b t )  
merely by inultiplication by the 
term nFACo* l/&a for reversible 
charge transfers, or by nPACo*l/=b 
for irreversible charge transfers, as 
in Equations 25 and 47. [Note that  
for the preceding zheniical reaction 
(Cases IT1 and IV), the stoichiometric 
concentration C* 2,ppears in these 
equations rather than the equilibrium 
concentration Co*.] 

For the case? invollring an irreversible 
chemical reaction, no additional re- 
strictions-other than that of selecting 
an initial potential anodic of the foot of 
the wave-were introduced in the 
derivation. For the three cases in- 
volving revwsible cliemical reactions, 
however, (Cases 111, IV, and V) a 
simplifying assumption was made in 
order t o  reduce the number of variables. 
In these cases, the integrals which 
arise corresponding to that  in Equation 
28 are of the form 

for preceding chemical reactions, and 

for succeeding chemicsl reactions. Here 
$ is l / a  for reversible charge transfer 
and l / b  for irreversible charge transfer. 

With these integrals, the integration by 
parts (used to remove the point of 
singularity) produces terms of the 
form 

( l / ; / ~ l / i 4  erf v ' ~ n  - v )  

( K V ' T / ~ F )  erf d m  
for a preceding cheinical reaction, and 

for a succeeding chemical reaction. 
Although the numerical evaluation 
could have been carried out retaining 
all these terms, considerable simplifica- 
tion resulted in assuming that 
S$(n - v) 3 4 This assumption makes 
i t  possible to consider the erf terms as 
unity, but exclude5 the cases involving 
small $ from the numrrical data-Le., 
cases where the chemical reaction has no 
effect on the charge transfer. 

These restrictions, once noted, are 
rrlatively unimportant and will be dis- 
cussed in connection with the individual 
cases. The simplification which results, 
however, is extremely important. I n  
some previous treatments (41) involv- 
ing reversible chemical reactions, it has 
been necessary to select a specific value 
of the equilibrium constant in order to 
calculate a set of data for a range of rate 
constants. In this case. for example, a 
table comparable to Table VI1 nould be 
required for each value of K likely to be 
of interest. Honever, the simplifica- 
tion discussed abore makes it possible 
for the effect of the equilibrium con- 
stant on the shape of the polarograms to 
be separated from its effect on the 
location of the curve on the potential 
axis This can be seen in Equations 58 
and GO where the effect 011 the potential 
can be handled by defining a new 

potential axis in terms of ( E  - Eli2)n 
- (RT/F)  In K / ( l + K )  for Case I11 
and ( E  - El& - ( R T / F )  In (1 + K )  
for Case V. For Case IV (Eauation 
59) the new potential axis is heined in 

- E") (Y na + (RT /F)  In 
- ( I i T / F )  In K l ( 1  + K ) .  

The effect of K on the shape of the 
polarograms is included in the numerical 
data. This approach places no re- 
strictions on the value of the equilihrium 
constant, and the only exception to the 
applicability of the numericai data is 
that stated above: the sum of the rate 
constants cannot be sniail compared 
to a. 

ThP valurs of  at) and x(bQ were 
calculated using 6 = 0.02. and are ac- 
curate to fO.000, -0.002-i.c., if 
any error is present, the values tend to 
be slightly low. The use of a larger 
value of 6 also introducrs a small error 
in the potential, and for each case where 
the kinetic cabe reduces to Case I ,  the 
waves are shifted cathodic by a few 
tenths of a millivolt in coniparison to 
Table I. 

X series solution also ma. obtained for 
each kinetic case (Table VI). As noted 
previously> only in those cases involving 
irreversible charge transfer was i t  
pos,sible to obtain series solutions which 
converged properly over the entire 
potentia! range of interest. However, 
even when iinsuitable for calculation of 
theoretical current voltage curves, the 
series solutions were extremcly useful 
in correlation of the experimental and 
kinetic parameters. This was par- 
ticu!arly true in those cases in which the 
serics was of the same type as obtained 
for Cases I or TI, since then thc form of 
the solution w.as known. and correlations 

m 

IY 

v 

Y l  

m 

m 
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Reversible Charge Tronsfer (Case 111) 
Poten- . \ / i /Kl /d  

tiala 0 .2  0 . 5  1 .o 1 . 5  3.0 6.0 10.0 

Table VII. Current Functions d?rx(at)  for a Chemical Reaction Preceding a 

- 

120 0,009 
100 0,019 
80 0.041 
60 0.081 
50 0.113 
45 0.132 
40 0.152 
35 0.174 
30 0.199 
25 0.224 
20 0.249 
15 0.275 
10 0.301 
5 0.324 
0 0.345 

-5 0.364 
10 0.379 
15 0.391 
20 0.399 
25 0.404 

- 30 0.406 
35 0,405 
40 0,402 
45 0.397 
50 0.390 

- 60 0.373 
80 0.337 

100 0.301 
120 0,273 
140 0.250 

0.009 
0,019 
0.040 
0.080 
0.108 
0.125 
0.144 
0.164 
0.184 
0,206 
0.228 
0.249 
0.270 
0.289 
0.307 
0.321 
0,334 
0.344 
0.351 
0.355 
0.358 
0.358 
0.357 
0.353 
0.349 
0.338 
0.310 
0.284 
0.260 
0.240 

0,009 
0.019 
0,039 
0.075 
0.100 
0.116 
0.131 
0.149 
0.164 
0.183 
0.199 
0.216 
0.232 
0.246 
0.259 
0.271 
0.280 
0 238 
0,293 
0,297 
0.299 
0.300 
0.300 
0.298 
0.296 
0.289 
0.272 
0.253 
0.236 
0.222 

0,009 
0,019 
0.038 
0.072 
0.094 
0.108 
0.121 
0.135 
0.150 
0.164 
0.178 
0.191 
0.204 
0.215 
0.225 
0,234 
0.241 
0,247 
0.252 
0.255 
0.257 
0.258 
0.258 
0.258 
0.256 
0.252 
0.240 
0.227 
0.214 
0.203 

Ep,2, mv. $29.3 31.3 34.4 37.5 

0,009 
0,018 
0.035 
0.063 
0.080 
0.089 
0.099 
0.109 
0.118 
0.127 
0.136 
0.144 
0.151 
0.158 
0.163 
0.168 
0.173 
0.176 
0.179 
0.181 
0.182 
0.183 
0.183 
0.183 
0.183 
0.181 
0.176 
0.170 
0.164 
0.158 

44.2 
a Potential scale is (E - Elin)n - ( R T / F )  In K/(1 + K ) .  

0,009 
0,017 
0.031 
0.051 
0.062 
0.068 
0,074 
0.079 
0.084 
0.089 
0.093 
0.098 
0.101 
0.104 
0.107 
0.109 
0.111 
0.113 
0.114 
0.115 
0.116 
0.116 
0.117 
0.117 
0.117 
0.116 
0.115 
0.113 
0.110 
0.108 

53.4 

0.008 
0.015 
0.027 
0,041 
0.049 
0.052 
0.055 
0.059 
0.062 
0.064 
0.067 
0,069 
0.071 
0,072 
0,074 
0.075 
0,076 
0.077 
0,077 
0.078 
0.078 
0.079 
0,079 
0.079 
0.079 
0,079 
0.078 
0.077 
0,076 
0,075 

62.2 

between the potential and kinetic 
parameters could be obtained from the 
exponential terms. 

111. CHEMICAL REACTION PRECEDING A 
REVERSIBLE CHARGE TRANSFER 

A large group of coupled chemical re- 
actions iiivolves cases in which the 
electroactive species is produced by a 
homogeneous first-order chemical re- 
action preceding a reversible charge 
transfer 

Only the case in which the chemical 
reaction is reversible is relevant; how- 
ever, there are no restrictions on possible 
values of the equilibrium constant. 

This case has been discussed (for the 
single scan method only) by Saveant 
and Vianello (58 41),  and in addition, a 
series solution has been presented (46). 

Qualitatively, the effect of a preceding 
chemical reaction on the cathodic scan 
depends on several factors, and three 
distinct limiting cases can be recognized. 
First, if l /a  is very small. the experi- 
ment is over before significant con- 
version of 2 to 0 can take place. Under 
such circumstances, the curve obtained 
is the same shape as Case I, appears at 
the normal potential for the uncompli- 
cated reduction of 0 to R, but the 

magnitude of the current is proportional 
to the equilibrium concentration of 
substance 0 in the bulk of the solution, 
rather than it.: stoichiometric con- 
centration C*. This result can be 
obtained from Equation 64, which, 
if l / a  is small, reduces to 
x(at) = 

This series is the same as Equation 34 
for the reversible case, except for the 
factor K / ( K  + 1). If K is large 
(equilibrium favoring 0) a normal 
stationary electrode polarogram is ob- 
tained. On the other hand, if K is small, 
the current is determined by the 
equilibrium concentration Co* = [ K /  
( K  + I ) ]  C*. This is the one correlation 
which was not obtained from the 
numerical solution, hecause of the 
simplifying assumption (that l /a  is not 
very small) which was made in the 
derivation. This rcstriction is not 
particularly serious, however, because 
the option of varying the rate of 
potential scan lends great versatility to 
the mpthod. For example, if low values 
of l / a  are encountered experimentally, 
and reasonable values of 1 are involved, 
one could merely reduce the rate of 
voltage scan to a region where the 
numerical data are applicable. On the 

0.4 

- 0.2 
c 
Y 
0 
x 5 0.0 

-0.2 

120 60 0 -60 

POTENTIAL, mv 
Figure 3. Cyclic stationary electrode 
poiarograms (Case 111) 
Potential scale i s  ( E  - El& - (RT/F)ln K/(1 + K )  

other hand, if 1 is low and a has already 
been reduced to the lower practical 
limit, Equation 70 could be used directly 
to  calcu!ate the theoretical current 
potential curve. The converse ap- 
proach, of using large enough rates of 
voltage scan to ensure that this condi- 
tion holds, has been used by Papoff t o  
determine equilibrium constants (28). 

The two other limiting cases can be 
obtained from Equation 64 by as- 
suming first that  l /a  is large, so 
that l l a  + i = 1 / a ,  and then con- 
sidering either large or small values of 
V’~/KV’~ rf <a/Kdf  is small, 
Equation 64 reduces to 

1)’+1 x 1 ”  
x(a0 = 7; (- 

j=1 

d F e x p  [ (- jnF/RT) 

gin nF l + K  L)] (71) 

which is the same as Equation 34 for 
the reversible case, except that  the wave 
appears a t  a potential determined by the 
equilibrium constant. At the other 
limit, for large values of ~~QK-V’K 
Equation 64 reduces to 
x(at) = 

This series does not correspond to one bf 
the previously encountered cases, and i t  
cannot be characterized merely by 
inspection. Nevertheless the appear- 
ance of the term 1 / d a  in each 
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Figure 4. Working curve, ratio of 
kinetic peak current to diffusion con- 
trolled peak current 

Case 111: $ = .d/a/~ di 
Case IV: + = d/b/~ v‘I 

term of the sun: indicates that the 
magnitude of the current will be inde- 
pendent of the rate of potential scan. 

Single Scan Method. The charac- 
teristics of the stationary electrode 
polarogram between these two liniit- 
ing cases were obtained from the 
numerical calculations. Typical cyclic 
polarograms calculated for several 
values of & / K d i  are shown in 
Figure 3. The curve for d i / K d i  
equal to zero corresponds to the rever- 
sible case, and as the chemical step be- 
comes more importark, the curves be- 
come more drawn out. I t  should be 
noted that in Figure 3 the ordinate is 
 at), and not the cuprent. Thus, for 
the situation where an increase in  
l / a / K d i c o r r c s p o n d s  to an increase in 
a, the current function  ut) decreases, 
but the actual current increases, since 
the factor l/a appears in Equation 25 
for the current. I n  the limit for large 
valueh of a, the decrease in  at) 
exactly balances th  s factor 6 in 
Equation 25, so that the current be- 
comes independent of a, as indicated in 
Equation 72. 

Values of the rate constants can be 
obtained from the cathodic stationary 
electrode polarogramq (provided the 
equilibrium constant is known) by com- 
paring the experimental curves with 
theoretical plots such as in Figure 3. 
Data for construct ion of accurate 
theoretical polarograms are presented 
in Table YII ,  

Since this is a rather cumbersome 
way of handling the data, an alternate 
approach may be more convenient. 
A large number of theoretical curves 
were calculated for mrious values of  
d a T K d t ,  in addition to those listed 
in Table VII. From these data, a 
working curve was constructed for the 
ratio &/id of the peak current obtained 
in a kinetic case to that expected for an 
uncomplicated diffusion controlled case. 
This procedure makes it unnecessary 
to have the value cf several of the 

> 
E 
i 
5 + 
Z 
w 
i- 
0 a 

1.0 0.0 I .o 2.0 
log VJ 

Figure 5. Variation of half-peak poten- 
tial as a function of the kinetic parameters 

Case 111: $ = do/Kd/j; potential scale is ( E p / *  - 
El,$)n - (RT/F)ln K / ( 1  + K). Case IV: $ = 
~ L / K  di; potential scale is ED)an, - 
(RT/F) In K / ( 1  4- K)  f (RT/F) In d / r D b / k ,  

experimental parameters such as the 
diffusion coefficient, electrode area. etc. 
The working curve for this case (Figure 
4) fits the empirical equation 

&/id = (73)  
1 

1.02 + 0.471 d a / K l / t -  
to about I % (except for very low values 
of d J K  dj, where the error does not 
exceed 1.5Yc). More precise values of 
the ratio &,/id as a function of 
& l K d ?  have been tabulated (27) ,  
and if required for construction of a 
more exact working curve, arc available 
on request. 

As indicated from the series solutions, 
the potential a t  L5hich the wave appears 
is indepmdent of l / a  I K f l  for sinall 
values (Equation 71) while the wave 
shifts anodic by about 6Q/n niv. for 
each ten-fold increase in - & / K d f  
for large values (Equation 72). For 
intermediate values, the shift in 
potential can be obtained from the nu- 
merical data. Since the wave is drawn 
out for large values of < a / ~ . \ / t  
in this case, i t  is more convenient to 
consider shifts in half peak potential 
rather than peak potential, and this 
behavior (Figure 5) can he used to 
obtain kinetic data. 

Cyclic Triangular Wave Method. 
As shown in Figure 3, the anodic 
portion of a cyclic stationary elec- 
trode polarogram is not affected quite 
as  much by the preceding chemical 
reaction as is the cathodic portion. 
For example, for d a / K l / t  equal to 
3.0, the cathodic curve is quite flat, but 
since the anodic portion involves a 
chemical reactioyi after charge transfer, 
i t  has many of the characteristics of 
Case V, and is still markedly peak 
shaped. For these curves, a snitching 
potential (Ex -Elil)n - (RT,’F)ln 
(K!(1 + K ) )  of -90 mv. was selected. 
The shape of the anodic curves is a 
function of the switching potential, and 
thus, i t  is not practical to  compile a 
table of the anodic current function, al- 

0 2 4 6 8 IO 
&KJi 

Figure 6. Ratio of anodic to cathodic 
peak current as a function of kinetic 
parameters, Case 111 

though such data are availnhle on 
request (27) .  In general, the height of 
the anodic peak (as measured to the 
extension of the cathodic curve) in- 
creases as the switchinq potential is 
made more cathodic. 

The anodic current is fairly insensitive 
to chanqes in d a f K d i  for values 
larger than about d ,  and thus the range 
of applicability of this correlation is 
about the same as for the cathodic 
current (Figures 3 and 4). However, 
for those cases where a value of id 
cannot be obtained for use with the 
workinq curve of Figure 4, the kinetic 
parameters can be determined by re- 
lating d ; , / K d r  to the ratio of the 
anodic to cathodic peak currents. A 
workinq curve for this correlation is 
shomn in Figure 6. Data for construc- 
tion of a more accurate working curve 
are available on request (27) .  

IV. CHEMICAL REACTION PRECEDING AN 
IRREVERSIBLE CHARGE TRANSFER 

The case in which a fir<t order 
chemical reaction precedes an ir- 
reversible charge transfer 

has not been discussed previoiisly. The 
stationary electrode polarograms are 
qualitatively similar to Case 111, except, 
of course, no anodic current is oberved 
in the cyclic triangu!ar Tvavp experi- 
ment, and further, the curves are w e n  
more drawn out because of the effect of 
the electron transfer coefficient. CY. 

Thus, although the main effect of the 
preceding chemical reaction is the same 
as Case 111-i.e , to decrease the current 
(conipared to the irreversible charge 
transfer without chemical complication) 
-the detailed characteristics of the two 
cases are markedly different, and effects 
of the rate controlled charge transfer 
can be separated from the rate con- 
trolled chemical reaction by quantita- 
tive evaluation of the stationary 
electrode polarogram>. 

As in Case 111, three distinct limiting 
cases can be considered depending on 
the kinetic parameter d b / K d i .  
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First, if l / b  is small, the curve is the 
same shape as Case 11, its potential is 
unaffected by the kinetic complication, 
and the magnitude of the current is a 
function of the equilibrium concentration 
of substance 0. Thus, for small values 
of l!b, Equation 65 reduces to 
x(b t )  = 

which is the same as Equation 48 for 
the uncomplicated irreversible case 
except for the factor K/(1 + K ) .  As 
in Case 111, this is the correlation which 
is not included in the numerical data 
because of the simplifying assumptions 
made. 

The two other limiting cases are ob- 
tained by assuming first that  l l b  is 
large, and then considering the series for 
both small and large values of 
db/~Z/i If db/~ d i i s  small, 
Equation 65 reduces to  

x(bt)  = 

e x p [ - J & ( E - E o +  cm,F 

RT -\/ai In - - 
an,F ks 

__ In ">1 (75) an,F 1 + K 
RT 

which is the same as Equation 48 for the 
irreversible case, except that  the 
potential at which the wave appears has 
been shifted by the equilibrium con- 
stant. 

At the other limit, for large values of 
f i / K Z / I ,  Equation 65 reduces to 

i m  

exp [- 1%: ( E  - EO t 

+ RT d x b  RT K -In - - ~ l n  - 
an,F k s  an,F 1 + K 

Z F  RT I n  Kd,b)]  7 (76) 

.4t this limit, a peak is no longer ob- 
served, and both the potential of the 
wave and niaqnitude of the current are 
independent of b. In  addition, Equation 
76 can be written in a closed form 
valid for large values of -\/ilk' 1/1 

Table VIII. Current Functions d?rx (b t )  for a Chemical Reaction Preceding an 
Irreversible Charge Transfer (Case IV) 

Poten- d / b l K d i  
tiale 0 . 2  0 . 5  1 .o 1 .5  3.0 6 .0  10.0 
160 0.003 
140 0.007 
120 0.016 
110 0.024 
100 0.035 
90 0.050 
80 0.070 
70 0.102 
60 0.140 
50 0.190 
40 0.248 
35 0.280 
30 0.312 
25 0.343 
20 0.370 
15 0.395 
10 0.414 
5 0.430 
0 0.440 

-5 0.444 
- 10 0.443 ~. . . ~~- 

15 0.438 
20 0.430 
25 0.419 
30 0.407 

- 35 0.394 
40 0.381 
50 0.355 
60 0.333 
70 0.313 
mv. +44.2 

0.003 
0.007 
0.016 
0.024 
0.034 
0.049 
0.070 
0,099 
0.134 
0.179 
0.230 
0.257 
0.282 
0.307 
0.330 
0.349 
0.364 
0.375 
0.382 
0.385 
0.386 
0.383 
0.378 
0,371 
0.362 
0,354 
0.345 
0.327 
0.309 
0.294 
47.3 

0.003 
0.007 
0.016 
0.023 
0.034 
0.048 
0.067 
0,094 
0.126 
0.164 
0.205 
0.226 
0.244 
0.263 
0.279 
0.292 
0.302 
0.310 
0.315 
0.318 
0.318 
0.317 
0.314 
0.310 
0.306 
0.301 
0.295 
0.283 
0.272 
0.261 
51.4 

0.003 
0.007 
0.016 
0.023 
0.033 
0.047 
0.065 
0.090 
0.117 
0.151 
0.185 
0.201 
0,216 
0.230 
0.241 
0.251 
0.260 
0.265 
0.269 
0.271 
0.272 
0.271 
0.269 
0.267 
0.263 
0.260 
0,257 
0.248 
0.240 
0.233 
54.5 

0.003 
0.007 
0.015 
0.022 
0.031 
0.044 
0.059 
0.079 
0.100 
0.122 
0.143 
0.152 
0.161 
0.168 
0.174 
0.179 
0.183 
0.186 
0.188 
0.189 
0.189 
0.189 
0.189 
0.188 
0.187 
0.186 
0.184 
0.180 
0.177 
0.174 
62.2 

0.003 
0.007 
0.015 
0.021 
0,029 
0.039 
0,050 
0.063 
0,076 
0.088 
0,099 
0.103 
0.107 
0.110 
0.112 
0.115 
0.116 
0.117 
0.118 
0.119 
0.119 
0.119 
0.119 
0.119 
0.118 
0.118 
0.117 
0.116 
0.115 
0.114 
71.9 

0.003 
0.007 
0.014 
0.019 
0.026 
0.033 
0.042 
0.050 
0.058 
0.065 
0.070 
0.072 
0.074 
0.076 
0.077 
0.078 
0.079 
0.079 
0.080 
0.080 
0.080 
0.080 
0.080 
0.080 
0.080 
0.080 
0,079 
0.079 
0.078 
0.078 
82.2 

5 Potential scale is (E - Eo)ana - (RT /F)  In K/(1 + K )  + (RTIF)  In d * D b / k ,  

A 

Yj 
Y 

X 

S 

120 60 0 -60 

POTENTIAL, rnv 
Figure 7. Stationary electrode polaro- 
grams, Case IV 

d / a D b / k 8  - ( R T / F )  In K/(1 + K )  
Potential scale is (E - E o ) a n ,  + ( R T / F )  In 

+ ~ In ~ 

RT 
an$ 1 + K 

K 

This is the equation for an S-shaped 
current-voltage curve, and a t  cathodic 
potentials the current is directly pro- 
portional to the term K ( k ,  + kb)l /* .  

Between these last two limiting cases, 
the characteristics of the stationary 
electrode polarogram can be obtained 
from the numerical solution to Equation 
59. Alternatively, theoretical current- 
potential curves could be calculated 
from the series solution, Equation 65, 
which converges properly over the 
entire potential range. Typical polaro- 
grams are given in Figure 7 ,  and data 
for construction of accurate curves are 
listed in Table VLII. 

; is  in Case 111, the kinetic parameters 
can be obtained from a direct com- 
parison of experimental and theoretical 
polarograms, or from working curves of 
the ratio &/id of the kinetic peak current 
to the diffusion controlled peak current 
for an irreversible charge tranqfer 
(Figure 4). The working curve for this 
case was found to fit the empirical 
equation 
i k / i d  = 

1 
1.02 + 0.531 d b / K d  (78) 

The applicability of Equation 78 is 
about the same as Equation 73. 
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POTENTIAL,mv 

Figure 8. Stationary electrode polaro- 
grams, Case V 
Potential scale is [ E  - €1,2)n - (RT/F) In (1 + K )  

As indicated from t i e  series solutions, 
the potential a t  whicl- the peak appears 
differs from Case II[. The potential 
does not depend on v'b-'K l / t for  small 
value4 of the kinetic parameter (Equa- 
tion 7 5 ) ,  while the potential shifts 
anodic hy about 60/an, mv. for each 
ten-fold increase foi. large values of 
Z / b l K l / i  (Equations 76 and 7 7 ) .  
This behavior, which also can be used to 
obtain kinetic data, is contrasted with 
Cabe IT1 in Figure 5 .  

V. CHARGE TRANSFER FOLLOWED BY A 
REVERSIBLE CHEMICAL REACTION 

The caw in which a reversible 
chemical reaction follo~vs a reversible 
chargc transfer 

O + n e i = R  
k f  

R * Z  (V) 

includes a fairly large group of organic 
electrode reactions. Such reactions 
have been studied by numerous workers 
using a variety 01' electrochemical 
techniques. Hov ever, the theory for 
stationary electrode polarography has 
not previously bem presented. 

If the charge transfi>r is irreversible, a 
succeeding chemical reaction will have 
no effect on the stationary electrode 
polarogram. The chemical reaction can 
still be studied if either substance R or 
2 is electroactive at ,some other potential 
but such cases nil1 riot he considered 
here, and are prob:Lbly more easily 
handled by other tezhniqucs such as 
step functional controlled potential 

Depending on the magnitude of the 
kinetic parameters, three limiting cases 
can be distinguished. First, if the rate 
of the chemical reacticln iLc very fast, the 
system will be in clquilibrium at all 
tinies, and the only effect will be an  
anodic displacement clf the wave along 
the potential axis. This result can be 
obtained from Equat on 66, which for 
large values of l /u  reduces to 

kb 

-60 i 
I Y 

- --50 3 
: 0 -  --40 E 
P 

+ I O -  -30 

2 

c 
< 
c - 

I \  / I  
I 
5 -10 
2 

c c 

: o  -40 E 
P 

+ IO 30 

Y 

I I I I I I I 
-1.5 -1.0 -0.5 0.0 0.5 

log 9 

Figure 9. Variation of peak potential 
as a function of kinetic parameters 
Case V: IC. = K da; the potential scale is 
( E p  - E l i h  - (RT/F) In ( 1  -I- K) 
Case VI: $ = k//a; the potential scale i s  ( E p  - E1,z)n 

This series is the same as Equation 34 
for the reversible case, except for the 
term (RTlnF) ln(1 + K )  in the 
exponential, which reflects the anodic 
displacement of the wave. 

The second limiting case to be con- 
sidered is that  in which the chemical 
reaction is very slow, so that essentially 
no chemical reaction takes place during 
the experiment. Under such conditions 
the curve should again be the normal 
reversible shape, but should appear at 
its normal potential. Thuq. if Zln is 
small, Equation 66 reduces exactly to 
Equation 31. This is the limiting case 
which is not included in the numerical 
solution because of the simplifying as- 
sumption. 'Cnfortunately this case is 
important experimentally, particularly 
when the equilibrium constant is large. 
Under these circumstances. however, 
the chenical reaction can be considered 
irreverqible ( k ,  >> k6), and an alternate 
approach to the theory is available. 
This \\-ill bc treated as Case VI, below. 

The third limiting case occurs when 
Zla is large, and the kinetic parameter 
K d a  also is large. Under these 
conditions Equation 66 reduces to 
x(nt) = 

nP In K. / - /1 ) ]  (80) 

which is the same form as the irreversible 
series, Equation 48. Thus, a stationary 
electrode polarogram is obtained which 
is the same shape as an  irreversible curve, 
x(at)  a t  the peak will equal 0.496 
(thp value of ~ ( b t )  in Case 11), and 

0.25L 0 1 2 3 4 5  

K.h/Ji 

Figure 10. Ratio of anodic to cathodic 
peak current as a function of the kinetic 
parameters, Case V 

usinq an  approach similar to Equa- 
tions 49 and 50, it  can be shown that 

E,, = EllL - (RT/nF)[O.'i80 + 
In K Z / P l  - In (1 + K ) ]  (81) 

In  these limiting cases, the peak 
potential v ill shift cathodic by about 
6O/n mv. for a ten-fold increase in 
K d a l r  

Single Scan Method. Typical sta- 
tionary electrode polarograms cal- 
culated from Equation 60 arc shown 
in Figure 8 and the da t a  arc listed 
in  Table IX. Honever,  thc  cathodic 
current function  at) varies only from 
0.446 to 0.496 with a variation of three 
orders of magnitude in K l / P l ,  and 
thus iq not particularly useful for 
kinetic nieasuremeriti. 

ith 
K l / a T  is probably more useful for 
characterizing the kinetic pal ameters 
from the cathodic scan. For small 
d u e s  of K l / Z ,  the curves approach 
reversible behavior (Equation i9) and 
the potential is independent of K d a T .  
At the other limit (Equations 80 and 81) 
the peak potential shifts cathotlically by 
about AOjn mv. for a ten-fold increase in 
K d a x .  For intermediate values of 
K l / n / l ,  the variation in peak potential 
can be obtained from Table IX. and a 
morking curve can be constructed as in 
Figure 9. Extrapolation of the ctraight 
line segments of the data indicate that 
Equation 79 will hold n henever KZ/a/2  
is less than about 0.05, and that Equa- 
tion SO (or 81) will hold when Kda 
is larger than about 5.0, 

Cyclic Triangular Wave Method. 
As expected from the nmhanisn i ,  the  
anodic portion of the  cyclic stationary 
electrode polarogram is very sensitive 
to  the kinetic parameters (Figure 8). 
Unfortunately, the peak height also 
is a function of the switching poten- 
tial, and thus  i t  is not convenient to 
compile tables of x(at)  for the anodic 
portion of the scan, although such data 
are available on request (27 ) .  I n  
order to use the anodic current for 
kinetic measurements, therefor?. it was 
necessary to select arbitrary switching 
potentials, and prepare working curves 

The variation of peak potential 
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Table IX. Current Functions d/rrx(at) for Charge Transfer Followed by a Reversible Chemical Reaction (Case V) 
K d a 7  

Potentiala 0 . 1  0.25 0.55 1 . o  2 .0  3.25 5 .0  10.0 
120 
100 
80 
60 
50 
45 
40 
35 
30 
25 
20 
15 
10 
5 
0 

-5  
10 
15 
20 
25 

- 30 
35 
40 
45 
50 

- 55 
60 
65 i o  
75 

- 80 
85 
90 
95 

100 
-110 

120 
130 
140 

E,, mv. 

0.008 
0.018 
0.037 
0,079 
0.108 
0.128 
0.149 
0.173 
0.200 
0.227 
0.256 
0.286 
0.316 
0.342 
0.372 
0.395 
0.414 
0.430 
0.440 
0.447 
0.449 
0.447 
0.443 
0.435 
0.426 
0.416 
0.405 
0.393 
0.381 
0.369 
0.357 
0.346 
0.336 
0.326 
0.316 

,30.3 

0.007 
0.016 
0.034 
0,070 
0.097 
0.115 
0.135 
0,157 
0.182 
0.210 
0.239 
0.269 
0.301 
0.330 
0.359 
0.386 
0.408 
0.426 
0.439 
0.448 
0.452 
0.452 
0.449 
0.442 
0,433 
0.423 
0.412 
0.400 
0,387 
0,376 
0.364 
0.352 
0.341 
0.330 
0.320 

0.006 
0.013 
0,028 
0.057 
0.082 
0.097 
0.114 
0.134 
0.158 
0.183 
0.210 
0.240 
0,272 
0.303 
0.334 
0,364 
0.390 
0.414 
0.433 
0.446 
0.455 
0.459 
0.458 
0.453 
0.446 
0.436 
0.425 
0.412 
0.400 
0.387 
0,375 
0.362 
0.351 
0.339 
0.328 
0.309 

-32.4 -36.5 
Potential scale is ( E  - ~ , , ~ ) n  - ( R T / F )  In (1 + K ) .  

0.005 
0 010 
0 021 
0.046 
0.066 
0.079 
0.093 
0,110 
0.129 
0.152 
0 177 
0,205 
0.235 
0.265 
0,300 
0.332 
0 363 
0.391 
0.416 
0.436 
0.452 
0.461 
0.465 
0.464 
0.459 
0.451 
0.441 
0.429 
0.416 
0.403 
0.389 
0.376 
0.363 
0.351 
0.340 
0.319 

.41.6 

0.003 
0,007 
0.015 
0.031 
0,045 
0,054 
0.065 
0,077 
0.092 
0.110 
0.129 
0.151 
0,177 
0.205 
0.236 
0.268 
0.302 
0.336 
0.368 
0.398 
0.424 
0,446 
0.461 
0,470 
0.474 
0.472 
0.446 
0.456 
0.444 
0.431 
0,417 
0.402 
0.389 
0.375 
0.362 
0.337 
0.316 

-50.9 

0.002 
0.005 
0,010 
0,022 
0.032 
0.039 
0.047 
0.056 
0.068 
0.081 
0.096 
0.114 
0.135 
0,159 
0.184 
0.213 
0,245 
0 ,278  
0.313 
0.347 
0.380 
0.410 
0.436 
0.455 
0.469 
0.478 
0.479 
0,476 
0,467 
0.456 
0,443 
0.429 
0.414 
0,399 
0.383 
0.356 
0.333 
0.312 

-59.1 - 

0.002 
0.003 
0.007 
0.016 
0.023 
0,028 
0.034 
0.041 
0.049 
0.059 
0,070 
0.084 
0.099 
0.118 
0.141 
0.166 
0.192 
0,222 
0.254 
0.288 
0.322 
0,357 
0.392 
0,420 
0,445 
0.464 
0.476 
0.483 
0.483 
0.477 
0,468 
0.455 
0.440 
0.425 
0,409 
0,378 
0.352 
0.329 
0.308 

-67.3 - 

0.001 
0 002 
0.004 
0.009 
0.013 
0.016 
0.019 
0.022 
0.028 
0.033 
0,040 
0.048 
0.058 
0.069 
0.083 
0.100 
0.118 
0.138 
0.163 
0.189 
0.220 
0.252 
0,287 
0.323 
0.358 
0,391 
0.422 
0.447 
0.468 
0.480 
0.487 
0.487 
0.482 
0.471 
0.458 
0.427 
0.395 
0,366 
0.340 

.82.7 

of the ratio i, (anodic) /i,(cathodic) a3 
a function of K d Z .  The curve for 
a switching potential of (Ex - El& 
- (RT/F)  In(l  + K )  equal to -90 mv. 
is shown in Figure 10. 

VI. CHARGE TRANSFER FOLLOWED BY AN 
IRREVERSIBLE CHEMICAL REACTION 

As indicated above, an alternate ap- 
proach to the theory of stationary 
electrode polarography for succeeding 
chemical reactions-which permits cor- 
relations for small values of l/a- 
involves considering the chemical re- 
action to be irreversible 

Except for a brief presentation of a 
series solution (Sd) the theory of 
stationary electrode polarography for 
this casc has not bren presented pre- 
viously. 

Qualitatively, the behavior is very 
similar to Case V. except that  neither 
t he  equilibrium constant nor kb is in- 
cluded in the kinetic parameter. Thus, 
for  small values of k,/a, the chemical re- 
action has little effect, and a reversible 
stationary electrode polarogram is ob- 

-0.2 . .\___,, '0.01 

1 I I I I 
180 120 60 0 -60 

(E- E,,, h ,mv 

Figure 1 1 .  Stationary electrode po- 
larogram, Case VI 

served a t  its normal potential. This 
result can be obtained from the series 
solution, since when k,/a is small 
Equation 67 reduces to Equation 34. 
This limiting case is precisely the one 
not included in the numerical calcula- 
tions of Case V, but is included here. 

At the other limit, as k,/a becomes 
large, Equation 67 reduces to  

x ( 4  = 

c l n  nF dm)] (82) 

which is the same form as the series for 
the irreversible case (Equation 38). 
In  this case it can be shown that 

E, = Ell2 - (RT/nF) X 
(0.780 - In dm) (83) 

Thus, i t  can be seen that this limiting 
case is the same one as the third listed 
under Case V, except that  i t  is .ap- 
proached from the opposite direction. 
For Equation 83 an increase in the 
kinetic parameter k f / a  causes an anodic 
shift in the wavc. while for Equation 
81, an  increase in the kinetic parameter 
K d a Z  causes a cathodic shift in the 
wave. This is because the tern1 In (I -I- 
K )  in Equation 81 has already shifted 
the wave anodic by an amount cor- 
responding to the maximum possible for 
complete equilibrium. 

Single Scan Method. Stationary 
electrode polarograms calculated from 
Equation 61 are shown in Figure 11, 
and the data are presented in Table 
X. 4 s  in Case V. the cathodic cur- 
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intermediate values of k,/a are in- 
cluded in Figure 9, and the limits of 
applicability of Equations 34 and 82 
(or 36 and 83) can be estimated as be- 

fore. Cyclic Triangular Wave Method. 
As in Case V, measurements on the  
anodic portion of the cyclic triangular 
wave are most suitable for kinetic 
measurements (Figure I I ) ,  but as 
before the anodic current function 
depends on the mi tch ing  potential. 

Figure 12. Ratio of anodic to cathodic I n  this case, ho\\eever, a n  extremely 
peak current as a function of klr, Case VI simde of handling the data n a s  

found. .I large number of single rycle 
theoretical curves 77 we calculated vary- 

rents vary by only about 10% for ing both k J / a  and the switching poten- 
a variation in ki/a of :tbout three orders tial, and for a constant value of the 
of magnitude, and thus are not useful parameter k / i  (where T is the time in 
for kinetic measurements. .$gain, the seconds from E, to E x ) ,  the ratio of 
variation in peak pot:ntial is probably anodic to cathodic peak currents v a s  
more useful. For smdl  values of k j la ,  found to be constant. (Ah before. the 
the peak potmtia! is independent of anodic peak current is measured to the 
kl /a ,  uhile for large values, an anodic extenqion of the cathodic curve.) l h u s  
shift of about 30,n niv. for a ten-fold a working curve could he constructed 
increase in k f / a  is observed. This for thcl ratio of peak currents ia/ic as a 
behavior, and also ;he behavior for function of k , ~  (Figure 12), and i f  

p 9 - \ - rryi 06 

P 04 
B s -- 0 2  

0 0  

\ 

-20 -I 0 0 0  
log(k,r) 

Table X. Current Functions &x(at) for Charge Transfer Followed by an Ir- 
reversible Chemical Reaction (Case VI) 

Potentiala 
160 
150 
140 
130 
120 
110 
100 
90 
80 
i o  
65 
60 
55 
50 
45 
40 
35 
30 
25 
20 
15 
10 
5 
0 

-5 
- 10 

15 
20 
25 
30 

- 35 
40 
45 
50 
60 

- i o  
80 
90 

100 
E,, mv. 

0.05 
0.003 
0.003 
0.004 
0.006 
0.009 
0,014 
0.020 
0.029 
0.042 
0.061 
0,073 
0.086 
0.102 
0.120 
0.140 
0.163 
0.188 
0.216 
0.244 
0.273 
0.303 
0.333 
0 339 
0.384 
0.405 
0.423 
0.435 
0,444 
0.448 
0.448 
0.445 
0,439 
0.4:31 
0,421 
0.399 
0.375 
0,351 
0.3:30 
0.311 

-27.7 

k / / a  
0 . 2  0 . 5  1 . 0  1 . 6  4 . 0  10.0 
0.003 
0.003 
0.005 
0,007 
0,010 
0.015 
0,021 
0.031 
0.045 
0.065 
0.077 
0.092 
0.108 
0.128 
0.148 
0.172 
0.199 
0.227 
0.256 
0.288 
0.317 
0.347 
0.374 
0.398 
0.418 
0.434 
0.445 
0.452 
0.454 
0.452 
0.448 
0.440 
0.430 
0.419 
0.395 
0.369 
0.346 
0,325 
0.305 

-25.2 
0 Potential scale is ( E  - Elis)n. 

0.003 
0.004 
0,005 
0.008 
0.011 
0.016 
0,024 
0,035 
0,050 
0.072 
0.085 
0.101 
0.120 
0.141 
0.163 
0.189 
0.218 
0.248 
0,278 
0.310 
0.341 
0,371 
0.396 
0.419 
0.437 
0.451 
0.459 
0.462 
0.461 
0.457 
0.448 
0.438 
0.426 
0.413 
0,387 
0.361 
0.337 

-21.1 

0.003 
0.004 
0.006 
0.009 
0.013 
0,019 
0.027 
0,040 
0.057 
0.083 
0.098 
0.116 
0.136 
0.160 
0.185 
0.213 
0.244 
0.276 
0.308 
0.340 
0,371 
0.400 
0.424 
0.443 
0.458 
0,467 
0.471 
0,470 
0.464 
0.456 
0,444 
0.431 
0.417 
0.403 
0.375 
0.349 
0.325 

-16.4 

0.003 
0.005 
0,007 
0,010 
0.015 
0.022 
0.032 
0.046 
0.065 
0.093 
0.110 
0.130 
0.153 
0.177 
0.206 
0.236 
0.269 
0.302 
0.335 
0.367 
0.396 
0.423 
0.445 
0.461 
0.472 
0.476 
0,476 
0,471 
0.461 
0.4.50 
0.436 
0.420 
0.406 
0.391 
0.363 

-11.8 

0.004 
0.006 
0.009 
0.014 
0.020 
0.030 
0.043 
0.062 
0.089 
0.124 
0.147 
0.173 
0.200 
0,230 
0.263 
0,297 
0.332 
0.367 
0.398 
0,427 
0.451 
0.469 
0.480 
0.486 
0.485 
0.480 
0,469 
0.456 
0.440 
0.424 
0,407 
0.392 
0.377 
0.362 
0.337 

-1.5 

0.006 
0,009 
0.014 
0,020 
0,030 
0.044 
0.062 
0,090 
0.126 
0.175 
0.203 
0.234 
0.268 
0.303 
0.338 
0.373 
0.406 
0.435 
0.459 
0.477 
0.488 
0.491 
0.489 
0.481 
0.469 
0.455 
0.439 
0.422 
0.405 
0.389 
0.374 
0.360 
0.346 
0.334 
0.312 

+9.8 

I .o 

0.8 

0.6 

9 0.4 

0.2 

- 
i 

0 .o 

-0.2 

120 60 0 -60 

(E- E,, 1 n ,rnv 
Figure 13. Stationary electrode po- 
larograms, Case VI1 

E1/2 is known, a rate constant can be 
calculat~d from a single cyclic curve. 

By using faster scan rates (small 
k l / a ) ,  Eli2 also can be obtained experi- 
mentally. For accurate work. a large 
scale plot of F i rwe  12 n-~~uld  be re- 
quired; and the ‘data are presented in 
Table XI. 

Qualitatively, from Figure 12. it is 
very difficult to measire the anodic 
scan for values of k f r  much greater than 
1.6. Conversely, a value of k f r  much 
less than 0.02 cannot be distinguished 
from the reversible case. The method 
is very convenient, since the ratio of 
peak heights is independent of such 
experimental parameters as the 
electrode area and diffusion coefficient. 

VII. CATALYTIC REACTION WITH REVERSIBLE 
CHARGE TRANSFER 

For an irreversible ratalytic reaction 
following a reversible charge transfer, 

O + n e * R  

Table XI. Ratio of Anodic to Cathodic 
Peak Currents, Case VI 

k /  7 i a / i c  

0.004 1 .oo 
0.023 0.986 
0.035 0.967 
0.066 0.937 
0.105 0.900 
0.195 0.828 
0.380 0.727 
0.52B 0.641 
0,550 0.628 
0.778 0.551 
1 . O j O  0.486 
1.168 0.466 
1.557 0.415 
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4.0- 

- id ik 2.0 I .o 

0.0. 

the theory of stationary electrode 
polarography (single sweep method) 
has been treated by Saveant and 
Vianello (39) who also applied the 
method in an  experimental study (38). 
Since additional correlations can be 
obtained by considering alternate ap- 
proaches to the problem, this case will 
be reviewed briefly. The cyclic triangu- 
lar wave method has not been treated 
previously. 

Qualitatively, the effect of the 
cheniical reaction on the cathodic por- 
tion of the cyclic wave would be an in- 

3.0:/ 

I I I 

crease in the maximum current. This 
ran be seen by considering the two 
lirniting cases. First, if k l la  is small, 
Equation 68 reduces directly to  
Equation 34, and a reversible stationary 
electrode polarogram is obtained. At  
the other limit, for large values of 
k l /a ,  Equation 68 reduces to  
x(@ = 

which indicates that the current is 
directly proportional to d& and inde- 
pendent of the rate of voltage scan, 
since .\/a is a coefficient in Equation 
25. 

Equation 83 can bewritten in the form 

which provides a closed form solution 
describing the entire wave. Under 
these conditions, no peak is obtained, 
and for large values of k f / a ,  the potential 
at which exactly one half of the catalytic 
limiting current flows is the polaro- 
graphic In  addition, for very 
rathodic potentials. Equation 84 re- 

Table XII. Current Functions .\/&(at) for a Catalytic Reaction with Reversible 
Charge Transfer (Case VII) 

Poten- 
tiala 
120 
100 
80 
60 
50 
45 
40 
35 
30 
25 
20 
15 
10 
5 
0 

-5 
10 
15 
20 
25 

- 30 
35 
40 
45 
50 

- 60 
80 

100 
120 
140 

mv. 
EPIP, 

0.04 
0,009 
0.020 
0.042 
0.086 
0.120 
0.140 
0.163 
0.189 
0.216 
0.245 
0.275 
0.306 
0.336 
0.364 
0.391 
0.414 
0.432 
0.448 
0.459 
0.465 
0.468 
0.467 
0.463 
0.457 
0.450 
0.431 
0.390 
0.354 
0.326 
0.305 

+27.3 

0 .1  
0.010 
0.021 
0.043 
0.088 
0.123 
0.145 
0.168 
0.195 
0.224 
0.254 
0.285 
0.318 
0.349 
0.380 
0.408 
0.434 
0.455 
0.472 
0.485 
0.494 
0.499 
0.500 
0.499 
0.495 
0.490 
0.476 
0.442 
0.413 
0.390 
0.374 

25.7 

k / / a  
0.2 0 .4  0 . 6  1 .0  1.78 3.16 10.0 

0.010 0.011 0.012 0.013 0.015 0.019 0.030 
0.021 0.023 0.025 0.028 0.033 0.040 0.066 
0.045 0.049 0.052 0.059 0.069 0.086 0.139 
0.093 0.100 0.108 0.121 0.144 0,176 0.289 
0.129 0.140 0.150 0.170 0.201 0.249 0.409 
0.152 0 . m  0.178 0.201 0.239 0.294 0.482 
0.177 0:iG 0.207 0 : i G  0:279 0.345 0151% 
0.205 0.224 0.242 0.273 0.326 0.403 0.665 
0.236 0.258 0.278 0.315 0.378 0.467 0.773 
0.267 0.294 0.318 0.361 0.433 0.539 0.894 
0.301 0.331 0.359 0.409 0.493 0.614 1.022 
0.337 0.371 0.403 0.461 0.558 0.695 1.162 
0.370 0.410 0.447 0.512 0.623 0.782 1.310 
0.404 0.449 0.491 0.566 0.690 0.867 1.459 
0.436 0.487 0.534 0.617 0.756 0.955 1.614 
0.465 0.522 0.574 0.668 0.821 1.042 1.769 
0.489 0.552 0.611 0.715 0.883 1.124 1.919 
0.510 0.580 0.644 0.757 0.942 1.204 2.061 
0.527 0.604 0.673 0.796 0.996 1.278 2.197 
0.540 0.622 0.697 0.829 1,044 1.345 2.322 
0.548 0.638 0.719 0.861 1.088 1.406 2.436 
0.553 0.649 0.735 0.885 1.126 1.462 2.540 
0.556 0.658 0.749 0.907 1.159 1.510 2.633 
0.555 0.663 0.759 0.924 1.188 1.552 2.713 
0.553 0.666 0.766 0.939 1.211 1.587 2.782 
0.545 0.668 0.776 0.961 1,250 1.644 2.894 
0.522 0.662 0.782 0.984 1.295 1.715 3.034 
0.502 0.653 0.781 0.994 1.315 1.749 3.102 
0.486 0.646 0.779 0.997 1.326 1.765 3.134 
0.474 0.641 0.777 0.999 1.330 1.772 3.149 

23.5 19.6 16.3 11.2 6.7 3 .8  1.0 
a Potential scale is ( E  - Eli&. 

I / I  

l o g  9 

Figure 15. Variation of half-peak po- 
tential as a function of kinetic parameters 

Case VII: = k//a; the potential scale i s ( E p i p  - €1 ’2)n 
Case VIII: $ = k,/b; the potential scale is ( E p t 2  - 
Eo)run. + ( R T / F )  In d / r D b / k .  

duces to a form derived by Saveant and 
Vianello (as) 

i = ? L F A C ~ *  a (85) 
which indicates, just as Equation 83, 
that  the limiting current for large 
values of kJ/U is independent of scan 
rate. 
Single Scan Method. Since Equa- 

tion 62 is an  Abel integral equation, 
the solution can be written directly 
in a manner similar to Caw I, Equa- 
tion 32. This is the approach used 
by Saveant and Vianello (39). Calcula- 
tions carried out using the numerical 
method agreed evactlv with the results 
of Saveant and Viancllo (for the 
cathodic portion of the v a n )  and 
typical curves are shown in Figure 13. 
However, the values of  at) presented 
by Saveant and Vanello do not cover 
the rising portion and peak of the 
stationary electrode polarogram at small 
enough potential intervals to permit 
convenient calculation of accurate 
theoretical curves. Thus. additional 
data are prescnted in Table XII. 

The cathodic current function  at) 
can be correlated with the kinetic 
parameter k f / a  by comparison of 
experimental and theoretical polaro- 
grams. However, it is probably more 
convenient to use a working curve in 
which the ratio of the catalytic peak 
current to the reversible peak current is 
plotted a$ a function of ( k f ’u ) l i2  
(Figure 14). For valnes of k,lu larger 
than about 1.0, the plot is essentially 
linear which defines the range of ap- 
plicability of Equations 84 and 85. 
For values of k J / u  l e s  than about 0 06, 
the peak ratio of &lid is fairly insensitive 
to changes in k f / a .  The method ap- 
pears very convenient, but for accurate 
work with small values of k l l u  a large 
scale plot of Figure 14 mould be re- 
quired, and the necessary data can be 
obtained from Table.; I snd XII. 

The variation in peak potential with 
changes in rate of potential scan also 
can be used to obtain kinetic data. For 
low values of kl /a ,  the peak potential is 
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Figure 16. Stationary electrod'e po- 
larograms, Case Vlll 
Potential scale i s  ( E  - E o ) a n ,  + (RT/F) I n  
d ? r D b / k *  

independent of k f / a ,  and is constant a t  
28.5/n mv. cathodic of Eliz as in the 
reversible case. -4s k f / a  increases, the 
peak potential shifts cathodically by 
about 60/n mv. for a ten-fold increase in 
k,/a but simultaneoiisly, the peak be- 
comes quite broad, and for values of 

k,/a larger than about 1.0, no peak is 
observed. Thus, i t  is more useful to 
correlate half-peak potentials with k f / a  
[as suggested by Saveant (SS)] since 
this correlation can be extended to the 
region where no peak is observed. As 
predicted from Equation 84, when 
k f / a  is larger than about 10, the 
potential a t  which the current is equal 
to half of the limiting current is inde- 
pendent of variations of k f / a ,  and is 
equal to the polarographic half-wave 
potential. The behavior for inter- 
mediate values of k f / a  is shown in 
Figure 15, and the data for an accurate 
plot can be obtained from Table XII. 

Spherical Electrodes. For the 
catalytic case, Weber (6'1) was able to 
derive a spherical correction term in 
closed form, which is the same as the 
one deiived by Reinmuth for the 
reversible case (56). Thus, the value 
of +(at) listed in Table I can be wed 
directly with the values of x (a t )  in 
Table XI1 to calculate the current a t  a 
spherical electrode. 

Cyclic Triangular Wave Method. 
Provided a switching potential is 
selected a t  leaqt 35/72 mv. cathodic of 
the peak potential, the anodic curve 
(as measured to the extension of the 
cathodic curve) is the qamc shape as 
the cathodic curve, independent of 
both the switching potential and k,/a.  

The ratio of the cathodic peak current 
to the anodic peak current is unity, 
exactly as in the reversible rase. At 
large values of kfla-e.g., larger than 
about 1.0-where no cathodic peak is 
observed, anodic peaks are not ob- 
served either, and on the anodic scan, 
the current simply returns to zero a t  
potentials corresponding to the foot of 
the cathodic wave. 

Since the anodic portion of the scan 
has exactly the same properties as the 
cathodic, no additional quantitative 
kinetic information r m  be obtained. 

VIII. CATALYTIC REACTION WITH IRREVERSIBLE 
CHARGE TRANSFER 

For catalytic system.. in which both 
the charge transfer reaction and the 
rhemical reaction are irreversible, 

k 

(VIII) 
k'f 

the theory of stationary electrode 
polarography ha. not been considered 
previously. Qualitatively, one would 
expect that the polaroqrams would be 
similar to the catalytic case ui th  
reversible charge transfer, except that 
the curves would be lower and more 
spread out on the potential axis. In  
addition, no anodic current would be 

O + n e - + R  

R + Z + O  

Table XIII. Current Functions d/?rx(bt)  for a Catalytic Reaction with Irreversible Charge Transfer (Case VIII) 
k?/b  .__ Potential0 0.04 0 . 1  0.2 0 . 4  0 . 6  1 .o 1.78 3.16 10.0 

160 
140 
120 
110 
100 
90 
80 
70 
60 
50 
40 
35 
30 
25 
20 
15 
10 
5 
0 

-5  
- 10 

15 
20 
25 
30 

- 35 
40 
50 
60 
70 

- 80 
100 
120 
140 
160 

EPiz, mv. 

0,004 
0.008 
O,O:i6 
0,0:!4 
0,035 
0.050 
0,0;'2 
0.104 
0.14-5 
0,198 
0.2ti4 
0.301 
0.334 
0.37'6 
0.410 
0.443 
0.4f19 
0.4E'O 
0.5c14 
0.511 
0.511 

0.497 
0 ,485 
0.470 

0.506 

0.4E16 
0.440 
0.411 
0.3516 
0.3f16 

0.3:!0 
0.300 

0 . 3 4  

+41.1 

0.m4 
0.0013 
O . O l ( i  
0.024 
0,035 
0.050 
0,073 
0,105 
0.14;' 
0.200 
0.26;' 
0.305 
0.344 
0.383 
0.418 
0.454L 
0.483 
0,506 
0,524 
0.534: 
0.53Sl 
0.538 
0.532 
0.523 
0.512 
0.500 
0.487 
0.46:; 
0,44i! 
0.42:; 
0.409 
0.386 
0.371 

39.6 

0.004 
0.008 
0.016 
0.024 
0.035 
0,051 
0.073 
0.105 
0.147 
0.201 
0.271 
0.311 
0.349 
0.392 
0.431 
0,470 
0.503 
0.532 
0.555 
0.571 
0.581 
0.586 
0.585 
0.581 
0.575 
0.568 
0.559 
0.541 
0.525 
0.512 
0.501 
0.484 
0.473 
0.466 
0.461 

37.0 

0.004 
0,008 
0.016 
0.024 
0.035 
0.051 
0,073 
0.106 
0,148 
0.205 
0.278 
0.320 
0.362 
0.408 
0.453 
0.500 
0.538 
0,575 
0.608 
0.633 
0.653 
0.667 
0.676 
0.681 
0.683 
0.683 
0.681 
0.674 
0 667 
0.661 
0.655 
0.646 
0.641 
0.638 
0.636 

32.4 

0.004 
0.008 
0.016 
0.024 
0.035 
0.051 
0,074 
0.107 
0.150 
0.208 
0.283 
0.327 
0,372 
0.422 
0.470 
0.521 
0.567 
0.610 
0.651 
0,685 
0.713 
0.735 
0.753 
0.765 
0.774 
0.780 
0.783 
0.786 
0.786 
0.785 
0 .  783 
0.780 
0,778 
0,776 
0.776 

27.7 

0.004 
0.008 
0.016 
0.024 
0.035 
0.051 
0.074 
0.108 
0.152 
0.213 
0.291 
0.339 
0.388 
0.444 
0.498 
0.556 
0.612 
0.666 
0,719 
0.766 
0.809 
0.844 
0.875 
0,900 
0.921 
0.937 
0.951 
0.969 
0.980 
0.988 
0.992 
0.997 
0.999 
0,999 
1.000 

19.8 

0.004 
0.008 
0.016 
0 024 
0.035 
0.051 
0.075 
0.109 
0.155 
0.218 
0.302 
0.354 
0.409 
0,473 
0.534 
0.600 
0.673 
0,742 
0.813 
0.878 
0.941 
0.998 
1.049 
1.094 
1.133 
1.166 
1.195 
1.238 
1.269 
1.289 
1.303 
1.320 
1.328 
1.331 
1.332 

10.3 

0,004 0.004 
0,008 0,008 
0.016 0,016 
0.024 0.024 
0.036 0.036 
0.052 0.052 
0.075 0,076 
0.110 0.113 
0.157 0.162 
0.224 0.234 
0.313 0.334 
0.370 0.399 
0.430 0.471 
0.500 0.558 
0.574 0.650 
0.656 0.761 
0,740 0.876 
0,827 1.002 
0.920 1.145 
1.007 1.288 
1.097 1.443 
1.178 1.595 
1.258 1.755 
1.328 1.903 
1.394 2,053 
1.450 2 186 
1.502 2.317 
1,583 2.538 
1.643 2.710 
1,684 2.840 
1.714 2.936 
1.748 3.056 
1.764 3.112 
1.772 3.139 
1,776 3,152 
1.3 -14.4 

a Potential scale is ( E  - E")  ana + ( R T / F )  In d a b / k a .  
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The variation of the half-peak 
z potential with changes in k / / b  also can 
0 be used to characterize the system. A 

working curve for this method is shown 
in Figure 15, and the data can be ob- 
tained from Table XIII. 

DIAGNOSTIC CRITERIA 

03 0 446Kl(I+K1 
I I I I 

In each of the kinetic cases, the 
effect of the chemical reaction nil1 

V time required to  perform the experi- 
Figure 17. Variation of peak current 
functions with rate of voltage scan 

observed in a cyclic triangular wave 
experiment. 

-\gain, two limiting cases can be con- 
sidered. For small values of k,/b, 
Equation 69 reduces to  Equation 48 and 
a n  irreversible statiouary clectrode 
polarogram is obtained. For large 
values of k,lb, Equation 69 reduces to 

ment. Taking Case V (irreversible 
succeeding chemical reaction) as an 
example, if a very rapid reaction is 
involved in experiments with very slow 
scan rates, the stationary electrode 
polarogram will reflect the char- 
acterktics of the chemical step almost 
entirely. On the other hand. if the rate 
of vollage scan is rapid compared to 
the rate of the reaction, the curves are 
identical to those for the corresponding 
uncomplicated charge transfer. 

Similar observations can be extended 
to the other kinetic cases, and are 
borne out quantitatively in the theory 
presented hrre-Le., in every kinetic 
case, the ratio of the rate constant to the 
rate of voltage scan appears in the 
kinetic parameter. This, in turn, 
makes it possible to use these relations 

k, cYn,F In v$)] to define diagnostic criteria for the 

2 (-1)7+1 (4;)' m b  X 

RT X 

j = 1  

d?rDb + RT 

b. 
Similarly, a closed form solution 

describing the entire wave can be 
obtained by rearranging Equation 86 

In @)] (87) 
an,F .Ira 

Typical curves for several values of 
k / / b  are shown in Figure 16 and the data 
are listed in Table XIII.  These curves 
qualitatively are similar to those of 
Figure 14 except that x(bt) ,  ki /b and the 
potential axis all depend on an,. 

For quantitative characterization of 
the kinetics, the data can be treated in 
a manner similar to the catalytic re- 
action coupled to a rcversible charge 
transfer. I n  this case, however, the 
ratio of the catalytic current to the 
irreversible current for the system is 
the parameter used. The working curve 
for this case is included in Figure 14. 
As in the previous case, the ratio 
&/id is fairly insensitive to changes in 
k f / b  less than about 0.06, and the points 
required for a large scale plot of the 
working curve can be obtained from 
Tables I11 and XIII. 

mentally are the variation-with 
changes in rate of voltage scan-of the 
cathodic peak current, the cathodic 
peak (or half-peak) potential, and the 
ratio of the anodic to cathodic peak 
currents. These diagnostic relations 
are most useful for qualitative char- 
acterization of unknown systems, since 
only trends in the experimental be- 
havior are required. Therefore, the 
correlations in Figures 17, 18 and 19, 
have all been calculated for an arbitrary 
value of rate constant (and equilibrium 
constant, i f  necessary) so that the 
behavior could be compared readily on 
the same diagram. 

,\mong the rrlations to be noted in 
Figure 17 is that  by plotting the 
quantity i,lnF.4 l/G Co* as a function 
of the rate of voltage scan, the effect of 

- 
0.01 0.1 1.0 IO 100 

V 
Figure 18. 
as a function of scan rate 

Rate of shift of potential 

t 1.41 / 

0.8 1 , O R i  

0.01 0.1 1.0 10 100 
V 

Figure 19. Ratio of anodic to cathodic 
peak currents as a function of rate 
of voltage scan 

u on the diffusion process can be 
separated from it. effect 011 the kinetics. 
Thus, for the uncomplicated charge 
transfer reactions (Cases I and 11) 
horizontal straight lines are obtained. 
The behavior for each kinetic case ap- 
proaches one of these straight lines A hen 
the rate of voltage wan is such that the 
chemical reaction cannot proceed signifi- 
cantly before the experiment is over. 
Experimentally, this correlation is ex- 
tremely easy to obtain, since it is only 
necessary to plot ip~til'z DS. u .  

The rate a t  which the wave shifts 
along the potential axis as the rate of 
voltage scan is varied (Figure 18) is also 
useful for investigation of unknown 
systems. Because several of the cases 
do not exhibit peak:, under some con- 
ditions, the half-peak potential wa? used 
in this correlation. Honever, these 
curves apply as well to the peak 
potential for Cases I, TI, T', and VI. 

In Figure 19, which is relevant only 
for reversible charge transfers, the ratio 
of anodic peak current to the cathodic 
peak clirrent is unity for the reversible 
(Case I) and catalytic (Case VI]) 
systems on!y, and this serves as a quick 
test for the presencc of kinetic complica- 
tion.. 

In sonie of the individual cases, 
additional experimental correlation. are 
particularly useful. For example, if an 
irreversible charge transfer reaction is 
involved, it is always possible to obtain 
en, from the shift in peak potential, 
provided the rate of voltage scan is in 
the proper range. For reversible charge 
tranqfer, other correlations are possible 
involving variation in anodic peak cur- 
rent or peak potential with switching 
potential. However, these correlations 
can be defined more easily in connection 
with experimental results on a particular 
kinetic case. Several studits involving 
applications of the theory presented 
here are now in progress, and these, 
with the additional correlations, will be 
presented in the future. 

Although various electrochemical 
methods have been dereloped recently 
uhich can be used for similar measure- 
ments on kinetic systems, stationary 
electrode polarography appears to be 
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particularly convenient to use. From 
the experimental pomt of view, the 
time scale of the  elperiment can be 
varied from conventiclnal polarographic 
rates of voltage scan of a few millivolts 
per second (where convection ultimately 
sets the lower limit of scan rate) to 
perhaps several thousand volts per 
second (where charging current and 
adsorption phenomena become im- 
portant). Furthermore, this extremely 
wide range of scan rates can be ob- 
tained with ease if insmmenbs based on 
operational amplifiers are available (42, 
69). Thus, the use of the diagnostic 
criteria is particularly simple, and 
stationary electrode 3olarograptiy is a 
very powerful method for studying 
electrochemical kinetics. 
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New Elec: t rodes for C h ro n o po ten tio me try 
in Thin Layers of Solution 
A. T. HUBBARD and FRED C. ANSON 
California Institute o f  Technology, Pasadena, Calif. 

b Two new electrodes for chrono- 
potentiometry in thin layers of solution 
are introduced and the details of 
their construction and manipulation are 
presented. In addition to giving more 
reproducible results, these electrodes 
are  more convenient to use than previ- 
ous designs. A typical set of data 
i s  presented, demonstrating the re- 
producibility of the experimental tran- 
sition times and their agreement with 
transition times calclJlated with Fara- 
day’s law from the r’imple geometrical 
volume of the electrclde crevices. 

N PREVIOUS STUDIES (2 ,  3) the theory I of thin layer chronopotentiometry 
was presented and tested with a 
specially constructed electrode for which 
the dimensions of the solution reservoir 
were somewhat smaller than those of 
the diffusion layer. This electrode 
suffered from the fact that  i t  had to be 
filled under reduced pressure and 
several hours were needed to wash out 
the electrode cavity after each use. 

I n  the present work two new 
electrodes have been devised that are 
simple to construct and may be rapidly 

filled and cleaned. The first electrode 
imprisons the thin layer of solution 
between the inner wall of a short 
section of precision-bore glass capillary 
tubing and a close-fitting platinum wire 
inserted into the tubing (Figure 1). 
The second electrode is constructed 
from a micrometer t o  which platinum 
faces have been attached; a thin layer 
of solution is confined between the 
faces of the micrometer which are 
equipotential (Figure 2). 

These electrodes are quite convenient 
to  use, and yield more reproducible re- 
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