

A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data

> by John F. Moulder William F. Stickle Peter E. Sobol Kenneth D. Bomben

> > Edited by Jill Chastain

Published by Perkin-Elmer Corporation Physical Electronics Division 6509 Flying Cloud Drive Eden Prairie, Minnesota 55344 United States of America

30 701 1883

26 111 4002

Preface

X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA), is widely used to investigate the chemical composition of surfaces. The use of XPS in analytical laboratories throughout the world attests to the problem-solving capability of this technique. The ability to explore the first few atomic layers and assign chemical states to the detected atoms has shown XPS to be a powerful addition to any analytical laboratory.

A great deal of information has been published on the principles of the technique and the diverse range of applications for which it is used. Volumes of XPS spectra exist in the scientific literature, and international committees are establishing databases with reference spectra that will be made available to the general public. It is not the authors' intent to exclude these spectra or to ignore these databases. Rather the intent is to assemble a concise volume of standard spectra to aid in the identification of XPS data.

The previous version of this handbook, published in 1978, contained data acquired with a cylindrical mirror analyzer (CMA). Since that time, our XPS hardware has evolved. We currently use a spherical capacitance analyzer (SCA) in conjunction with improved detector technology and the choice of either a high-performance Al x-ray monochromator or an achromatic Mg/Al dual anode x-ray source. This handbook is an update of the previous handbook with data acquired using our current SCA, which has a transmission function different from that of a CMA, and both monochromatic and achromatic x-ray sources. In addition, data are included from several elements not contained in the previous handbook. This handbook is meant to serve as a guide and reference work for the identification, quantification, calibration and interpretation of XPS spectra for users of Perkin-Elmer XPS systems equipped with SCAs and Omni Focus[™] lenses. It is the authors' hope that this handbook will play a useful role in the practice of XPS.

Perkin-Elmer Corporation Physical Electronics Division October 1992 Acknowledgments: The authors and editor would like to thank the following individuals for their contributions to the completion of this handbook: Dr. Charles Wagner, Surfex, for his contributions to the chemical states database; Dr. Albert Bevolo, Iowa State University, Ames Laboratory (USDOE), for providing the rare earth samples; Linda Wirtjes, Physical Electronics Laboratory; Teresa Salvati; Dr. Douglas Stickle; and Dr. Michael Burrell, General Electric Company. The National Museum of Natural History - Smithsonian Institution provided the cinnabar sample (NMNH R630) used for the mercury data. We also gratefully acknowledge the authors of the previous handbook.

Table of Contents

L	X-rav	Photoelectron	Spect	roscopy
---	-------	---------------	-------	---------

A. Introduction
B. Principles of the Technique
 C. Preparing and Mounting Samples
 D. Experimental Procedure
 E. Data Interpretation

4. Quantitative Analysis	
5. Determining Element Location	
a. Depth	
b. Surface Distribution	
c. Insulating Domains on a Conductor	
F. How to Use this Handbook	
II. Standard XPS Spectra of the Elements	
III. Appendix	
A. Auger Parameters	
7	
B. Chemical States Tables	
r -	
C. Chemical States Tables References	
D. Valence Band Spectra	
E Atomic Sensitivity Easters for V ray Sources at 00°	252
E. Alomic Sensitivity Factors for X-ray Sources at 90	
F Atomic Sensitivity Factors for X-ray Sources at 54.7°	253
G. Line Positions by Element for Al Ka X-rays	
H. Line Positions by Element for Mg Ka X-rays	
J. Line Positions in Numerical Order	
K Deriodia Tabla	261
K. ICHOULC TAULE	

I. X-ray Photoelectron Spectroscopy

A. Introduction

X-ray Photoelectron Spectroscopy (XPS) was developed in the mid-1960s by Kai Siegbahn and his research group at the University of Uppsala, Sweden. The technique was first known by the acronym ESCA (Electron Spectroscopy for Chemical Analysis). The advent of commercial manufacturing of surface analysis equipment in the early 1970s enabled the placement of equipment in laboratories throughout the world. In 1981, Siegbahn was awarded the Nobel Prize for Physics for his work with XPS.

This handbook is meant to furnish the user with much of the information necessary to use XPS for diverse types of surface analysis. Information is provided on methods of sample preparation, data gathering, elemental identification, chemical state identification, quantitative calculation and elemental distribution.

Surface analysis by XPS involves irradiating a solid in vacuo with monoenergetic soft x-rays and analyzing the emitted electrons by energy. The spectrum is obtained as a plot of the number of detected electrons per energy interval versus their kinetic energy. Each element has a unique spectrum. The spectrum from a mixture of elements is approximately the sum of the peaks of the individual constituents. Because the mean free path of electrons in solids is very small, the detected electrons originate from only the top few atomic layers, making XPS a unique surface-sensitive technique for chemical analysis. Quantitative data can be obtained from peak heights or peak areas, and identification of chemical states often can be made from exact measurement of peak positions and separations, as well as from certain spectral features.

Included in this handbook are survey spectra, strong line spectra and x-ray excited Auger spectra for most of the elements and some of their compounds, in addition to plots and tables of energy shift data which aid in the identification of chemical states.

9

B. Principles of the Technique

Surface analysis by XPS is accomplished by irradiating a sample with monoenergetic soft x-rays and analyzing the energy of the detected electrons. Mg K α (1253.6 eV) or Al K α (1486.6 eV) x-rays are usually used. These photons have limited penetrating power in a solid on the order of 1-10 micrometers. They interact with atoms in the surface region, causing electrons to be emitted by the photoelectric effect. The emitted electrons have measured kinetic energies given by:

$$KE = hv - BE - \phi_s \tag{1}$$

where hv is the energy of the photon, BE is the binding energy of the atomic orbital from which the electron originates, and ϕ_s is the spectrometer work function.

The binding energy may be regarded as the energy difference between the initial and final states after the photoelectron has left the atom. Because there is a variety of possible final states of the ions from each type of atom, there is a corresponding variety of kinetic energies of the emitted electrons. Moreover, there is a different probability or cross-section for each final state. Relative binding energies and ionization cross-sections for an atom are shown schematically in Figure 1. The Fermi level corresponds to zero binding energy (by definition), and the depth beneath the Fermi level in the figure indicates the relative energy of the ion remaining after electron emission, or the binding energy of the electron. The line lengths indicate the relative probabilities of the various ionization processes. The p, d and f levels become split upon ionization, leading to vacancies in the $p_{1/2}$, $p_{3/2}$, $d_{3/2}$, $d_{5/2}$, $f_{5/2}$ and $f_{7/2}$. The spin-orbit splitting ratio is 1:2 for p levels, 2:3 for d levels and 3:4 for f levels. As an example, the spin-orbit splitting of the Si 2p is shown in Figure 2.

Because each element has a unique set of binding energies, XPS can be used to identify and determine the concentration of the elements in the surface. Variations in the elemental binding energies (the chemical shifts) arise from differences in the chemical potential and polarizability of compounds. These

Figure 1. Relative binding energies and ionization cross-sections for U. The binding energy is proportional to the distance below the line indicating the Fermi level, and the ionization cross-section is proportional to the length of the line.

Figure 2. High-resolution spectrum of single-crystal Si showing the spin-orbit splitting of the 2p level.

chemical shifts can be used to identify the chemical state of the materials being analyzed.

In addition to photoelectrons emitted in the photoelectric process, Auger electrons may be emitted because of relaxation of the excited ions remaining after photoemission. This Auger electron emission occurs roughly 10^{14} seconds after the photoelectric event. The competing emission of a fluorescent x-ray photon is a minor process in this energy range. In the Auger process (Figure 3), an outer electron falls into the inner orbital vacancy, and a second electron is simultaneously emitted, carrying off the excess energy. The Auger electron possesses kinetic energy equal to the difference between the energy of the initial ion and the doubly charged final ion, and is independent of the mode of the initial ionization. Thus, photoionization normally leads to two emitted electrons — a photoelectron and an Auger electrons. The sum of the kinetic energies of the electrons emitted cannot exceed the energy of the ionizing photons.

Probabilities of electron interaction with matter far exceed those of the photons, so while the path length of the photons is of the order of micrometers, that of the electrons is of the order of tens of angstroms. Thus, while ionization occurs to a depth of a few micrometers, only those electrons that originate within tens of

Figure 3. The XPS emission process (top) for a model atom. An incoming photon causes the ejection of the photoelectron. The relaxation process (bottom) for a model atom resulting in the emission of a $KL_{23}L_{23}$ electron. The simultaneous two-electron coulombic rearrangement results in a final state with two electron vacancies.

angstroms below the solid surface can leave the surface without energy loss. These electrons which leave the surface without energy loss produce the peaks in the spectra and are the most useful. The electrons that undergo inelastic loss processes before emerging form the background. Calculations of the inelastic mean free paths of electrons in various materials are shown in Figure 4.

C. Preparing and Mounting Samples

Handbook of X-ray Photoelectron Spectroscopy

The electrons leaving the sample are detected by an electron spectrometer according to their kinetic energy. The analyzer is usually operated as an energy window, referred to as the pass energy, accepting only those electrons having an energy within the range of this window. To maintain a constant energy resolution, the pass energy is fixed. Incoming electrons are adjusted to the pass energy before entering the energy analyzer. Scanning for different energies is accomplished by applying a variable electrostatic field before the analyzer. This retardation voltage may be varied from zero up to and beyond the photon energy. Electrons are detected as discrete events, and the number of electrons for a given detection time and energy is stored and displayed.

Figure 4. Calculated inelastic electron mean free paths in various metals from the method of S. Tanuma, C.J. Powell and D.R. Penn, Surf. Interface Anal. 17, 911 (1991).

C. Preparing and Mounting Samples

In the majority of XPS applications, sample preparation and mounting are not critical. Typically, the sample is mechanically attached to the specimen mount, and analysis is begun with the sample in the as-received condition. Additional sample preparation is discouraged in many cases because any preparation might modify the surface composition. For those samples where special preparation or mounting cannot be avoided, the following techniques are recommended.

1. Removing Volatile Material

Ordinarily, volatile material is removed from the sample before analysis. In exceptional cases, when the volatile layer is of interest, the sample may be cooled for analysis. The cooling must be to a sufficiently low temperature to guarantee that the volatile element is not warmed to evaporation by any heat load that the analysis conditions may impart. Removal of unwanted volatile materials is usually accomplished by long-term pumping in a separate vacuum system or by washing with a suitable solvent. Use freshly distilled solvent to avoid contamination by high boiling point impurities within the solvent. Choice of the solvent can be critical. Hexane or other light hydrocarbon solvents are probably least likely to alter the surface, providing the solvent properties are satisfactory. Samples may also be washed efficiently in a Soxhlett extractor using a suitable solvent.

2. Removing Nonvolatile Organic Contaminants

When the nature of an organic contaminant is not of interest or when a contaminant obscures underlying material that is of interest, the contaminant may be removed with appropriate organic solvents. As with volatile materials, the choice of solvent can be critical.

3. Surface Etching

Ion sputter-etching or other erosion techniques, such as the use of an oxygen plasma on organic materials (see Section E.5.a.(3), p. 27), may be used to remove surface contaminants. This technique is particularly useful when removing adventitious hydrocarbons from the sample or when the native oxides, formed by exposure to the atmosphere, are not of interest.

Argon ion etching is commonly used to obtain information on composition as a function of the exposure time to ion etching. Calibration of the sputter rates can be used to convert sputter time to information on depth into the specimen. Because sputtering may cause changes in the surface chemistry, identification of the changes in chemical states with depth may not reflect the true composition.

4. Abrasion

Abrasion of a surface can be done without significant contamination by using a laboratory wipe, a cork, a file or a knife blade. This may cause local heating, and reaction with environmental gases may occur (e.g., oxidation in air and formation of nitrides in nitrogen). To prevent oxidation of more active materials, perform abrasion in an inert atmosphere such as a glove box. The abraded material should then be transferred to the ultra-high vacuum (UHV) chamber in a sealed vessel to preserve the clean surface.

5. Fracturing and Scraping

With proper equipment, many materials can be fractured or scraped within the test chamber under UHV conditions. While this obviates contamination by reaction with atmospheric gases, attention must be given to unexpected results which might occur. Fracturing might occur along the grain boundaries which may not be representative of the bulk material. Scraping can cover hard material with soft material when the sample is multiphase.

6. Grinding to Powder

If spectra characteristic of bulk composition are desired, samples may be ground to a powder in a mortar. Protection of the fresh surfaces from the atmosphere is required. When grinding samples, localized high temperatures can be produced, so grinding should be done slowly to minimize heat-induced chemical changes at the newly created surfaces. The mortar should be well cleaned before reuse.

7. Mounting Powders for Analysis

There are a number of methods which can be used to mount powders for analysis. Perhaps the most widely used method is dusting the powder onto a polymer-based adhesive tape with a camel-hair brush. The powder must be dusted across the surface carefully and lightly, with no wiping strokes. Some researchers shun organic tape for UHV work, but others have successfully used certain types of tape in the 10⁻¹⁰ Torr range.

Alternative methods for mounting powders include pressing the powder into indium or other soft foils, supporting the powder on a metallic mesh, pressing the powder into pellets or simply depositing the powder by gravity. With the foil method, the powder is pressed between two pieces of pure foil. The pieces are then separated, and one of them is mounted for analysis. Success with this technique has been varied. Sometimes bare foil remains exposed and, if the sample is an insulator, parts of the powder can charge differently. Differential charging can also be a problem when a metallic mesh is used to support the powder. If a press is used to form the powder into a pellet of workable dimensions, a press with hard and extremely clean working surfaces should be used. Gravity can effectively hold some materials in place, particularly if a shallow well or depression is cut in the surface of the sample mount. Allowing a liquid suspension of the powder to dry on the specimen holder is an effective way of producing a

uniform layer. With these methods, care must be taken in pump-down to ensure that gas evolution does not disturb

the sample. A throttled roughing valve is especially effective.

D. Experimental Procedure

1. Technique for Obtaining Spectra

All spectra in this handbook were obtained using a PHI Model 5600 MultiTechnique system. A schematic diagram of the apparatus (Figure 5) illustrates the relationship of major components, including the electron energy analyzer, the x-ray source, and the ion gun used for sputter-etching. The Model 10-360 Electron Energy Analyzer incorporated into the 5600 is an SCA, and the input lens to the analyzer is an Omni Focus III lens. The excitation sources used were a Model 10-550 x-ray source with a Model 10-410 monochromator and a Model 04-548 dual-anode source which was used with 'a magnesium anode. All of the spectra in the handbook were taken with the x-ray source operating at 400 W (15 kV - 27 mA). The specimens were analyzed at an electron take-off angle of 70°, measured with respect to the surface plane. The monochromatic x-ray source is located perpendicular to the analyzer axis, and the standard x-ray source is located at 54.7° relative to the analyzer axis.

In the PHI Model 5600 MultiTechnique system, energy distribution, energy resolution and analysis area are all a function of the analyzer. For all of the spectra in this handbook, the spectrometer was operated in a standard mode. The Omni Focus III lens was used to scan the spectrum while the SCA was operated at a constant pass energy. This resulted in constant resolution (ΔE) across the entire energy spectrum. The size of the analysis area was defined by the aperture selection of the Omni Focus III lens. Analyzer energy resolution ($\Delta E/E$) was determined by the choice of pass energy and the selected

aperture. All of the spectra in this handbook were obtained using an 800 µm diameter analysis area.

All of the spectra in this handbook were recorded and stored using the PHI ACCESS™ data system. The instrument was calibrated daily, and the calibration was checked several times each day during data acquisition. The analyzer work function was determined assuming the binding energy of the Au 4f7n peak to be 84.0 eV. All survey spectra scans were taken at a pass energy of 58.7 eV. The narrow scans of strong lines were, in most cases, just wide enough to encompass the peak(s) of interest and were obtained with a pass energy of 23.5 eV. A lower pass energy may show more structure for some materials. The narrow spectra were necessary to accurately determine the energy, shape and spin-orbit splitting of the strong lines. On insulating samples, a highresolution spectrum was taken of the adventitious hydrocarbon on the surface of the sample to use as a reference for charge correction. The generally accepted binding energy for adventitious carbon is 284.8 eV.

The samples analyzed to obtain the spectra in this handbook are standard materials of known composition. Metal foils and polycrystalline materials with large surface areas were mechanically fastened to the specimen mount. Powder samples were ground with a mortar and pestle to expose fresh surfaces and were dusted onto adhesive tape. Most elemental standards were sputteretched immediately prior to analysis to remove surface contamination. Most compounds, however, were ground or cleaved, and the freshly exposed surface was analyzed

Figure 5. A schematic diagram of the PHI Model 5600 MultiTechnique system.

without etching in order to avoid possible changes in surface chemistry. Ne, Xe and Kr were implanted in graphite and Ar in silicon via ion implantation to unknown concentrations prior to analysis.

2. Instrument Calibration

To ensure the accuracy of the data presented in this handbook, the instrument used to obtain the data was calibrated regularly throughout the data-gathering process. The best way to check calibration, and the method used here, is to record suitable lines from a known, conducting specimen. Typically, the Au 4f or Cu 2p and 3p lines are used. The lines should be recorded with a narrow sweep width in the range of 5-10 eV, and

a pass energy of 23.5 eV or less (corresponding to the pass energy normally used for high resolution scans) should be used.

There is general agreement on accurate values of Cu, Au and Ag standard line energies. The values in Table 1 are recommended for clean Au, Ag and Cu:

Table 1. Reference Binding Energies (eV)

	Al Ka	Mg Ka
Cu 3p	75.14	75.13
Au 4f7/2	83.98	84.00
Ag 3d5/2	368.26	368.27
Cu L ₃ MM	567.96	334.94
Cu 2p _{3/2}	932.67	932.66
Ag M4NN	1128.78	895.75

from M. P. Seah Surf. Interface Anal. 14, 488 (1989)

Because the $2p_{3/2}$ and $3p_{3/2}$ photoelectron peak energies of Cu are widely separated in energy, measurement of these peak binding energies provides a quick and simple means of checking the accuracy of the binding energy scale. Utilizing all of the above standard energies establishes the linearity of the energy scale and its position, i.e., the location of the Fermi level.

3. Programming Scans for an Unknown Sample

For a typical XPS investigation where the surface composition is unknown, a broad scan survey spectrum should be obtained first to identify the elements present. Once the elemental composition has been determined, narrower detailed scans of selected peaks can be used for a more comprehensive picture of the chemical composition. This is the procedure that has been followed in compiling data for this handbook, even though specimen composition was known prior to analysis.

a. Survey Scans. Most elements have major photoelectron peaks below 1100 eV, and a scan range from 1100-0 eV binding energy is usually sufficient to

E. Data Interpretation

identify all detectable elements. The spectra in this handbook were recorded with a scan range of 1400-0 eV (Al excitation) or 1200-0 eV (Mg excitation) binding energy. In an unknown sample, if specific elements are suspected at low concentrations, their standard spectra should be consulted before programming the survey scan. If the strongest line occurs above 1100 eV binding energy, the scan range can be modified accordingly.

An analyzer pass energy of 187 eV, in conjunction with the appropriate aperture, is recommended for survey scans with the PHI Model 5600 MultiTechnique system. These settings result in adequate resolution for elemental identification and produce very high signal intensities, minimizing data acquisition time and maximizing elemental detectability.

b. Detail Scans. For purposes of chemical state identification, for quantitative analysis of minor components and for peak deconvolution or other mathematical manipulations of the data, detail scans must be obtained for precise peak location and for accurate registration of line shapes. There are some logical rules for this programming.

(1) Scans should be wide enough to encompass the background on both sides of the region of interest, yet with small enough step sizes to permit determination of the exact peak position. Sufficient scanning must be done within the time limits of the analysis in order to obtain good counting statistics.

(2) Peaks from any species thought to be radiation-sensitive or transient should be run first. Otherwise, any convenient order may be chosen.

(3) No clear guidelines can be given on the maximum duration of data gathering on any one sample. It should be recognized, however, that chemical states have vastly varying degrees of radiation sensitivity and that for any one set of irradiation conditions, there exists for many samples a condition beyond which it is impractical to attempt gathering data.

(4) With the PHI Model 5600 MultiTechnique system, an analyzer pass energy of 23 eV is normally used for routine detail scans. Where higher energy resolution is needed, lower pass energies can be utilized. For example, the sputter-cleaned Si 2p on p. 56, taken at 23 eV pass energy, can be compared to the chemically etched Si 2p shown in Figure 2 (p. 11).

E. Data Interpretation

1. The Nature of the Spectrum

a. General Features. The spectrum is displayed as a plot of the number of electrons versus electron binding energy in a fixed, small energy interval. The position on the kinetic energy scale equal to the photon excitation energy minus the spectrometer work function corresponds to a binding energy of 0 eV with reference to the Fermi level (Equation 1, p. 10). Therefore, a binding energy scale with 0 at that point and increasing to the left is customarily used.

The spectra in this handbook are typical for the various elements. The well-defined peaks are due to electrons

which have not suffered an inelastic energy loss emerging from the sample. Electrons that have lost energy increase the level of the background at binding energies higher than the peak energy. The background is continuous because the energy loss processes are random and multiple. The background in the Mg K α induced spectra is larger than the background in the monochromated Al K α induced spectra because of excitation by Bremsstrahlung radiation of the nonmonochromated light.

The "noise" in the spectrum is not instrumental in origin but is the consequence of the collection of single electrons as counts randomly spaced in time. The standard deviation for counts collected in any channel is equal to the square root of the counts so that the percent standard deviation is 100/(counts)^{1/2}. The signal-to-noise ratio is then proportional to the square root of the counting time. The background level upon which the peak is superimposed is a characteristic of the specimen, the excitation source and the transmission characteristics of the instrument.

b. Types of Lines. Several types of peaks are observed in XPS spectra. Some are fundamental to the techniqueand are always observed. Others are dependent upon the exact physical and chemical nature of the sample. A third type is the result of instrumental effects. The following describes the various spectral features that are likely to be encountered:

(1) Photoelectron Lines. The most intense photoelectron lines are relatively symmetrical and are typically the narrowest lines observed in the spectra. Photoelectron lines of pure metals can, however, exhibit considerable asymmetry due to coupling with conduction electrons. Peak width is a convolution of the natural line width (the lifetime of the "hole" resulting from the photoionization process), the width of the x-ray line which created the photelectron line and the instrumental contribution to the observed line width. Less intense photoelectron lines at higher binding energies are usually wider by 1-4 eV than the lines at lower binding energies. All of the photoelectron lines of insulating solids are of the order of 0.5 eV wider than photoelectron lines of conductors. The approximate binding energies of all photoelectron lines detectable by Al or Mg radiation are cataloged in Appendices G and H.

(2) Auger Lines. These are groups of lines in rather complex patterns. There are four main Auger series observable in XPS. They are the KLL, LMM, MNN and NOO series, identified by specifying the initial and final vacancies in the Auger transition. The KLL series, for example, includes those processes with an initial vacancy in the K shell and final double vacancy in the L shell. The symbol V (e.g., KVV) indicates that the final vacancies are in valence levels. The KLL series has, theoretically, nine lines, and others have still more. Because Auger lines have kinetic energies which are independent of the ionizing radiation, they appear on a binding energy plot to be in different positions when ionizing photons of different energies (i.e., different x-ray sources) are used. Core-type Auger lines (with final vacancies deeper than the valence levels) usually have at least one component of intensity similar to the most intense photoelectron line. Positions of the more prominent Auger components are cataloged along with the photoelectron peaks in Appendices G and H.

(3) X-ray Satellites. The x-ray emission spectrum from a nonmonochromatic source used for irradiation exhibits not only the characteristic x-ray but also some minor x-ray components at higher photon energies. For each photoelectron peak that results from the routinely used Mg and Al K α xray photons, there is a family of minor peaks at lower binding energies, with intensity and spacing characteristic of the x-ray anode material. The pattern of such satellites for Mg and Al is shown in Table 2. A resultant spectrum using Mg x-rays is shown in Figure 6.

Table 2. X-ray Satellite Energies and Intensities

		$\alpha_{1,2}$	CX3	0.4	α_5	α ₆	β
Mg	displacement, eV	0	8.4	10.1	17.6	20.6	48.7
	relative height	100	8.0	4.1	0.6	0.5	0.5
Al	displacement, eV	0	9.8	11.8	20.1	23.4	69.7
	relative height	100	6.4	3.2	0.4	0.3	0.6

Figure 6. Mg x-ray satellites observed in the C 1s spectrum of graphite.

(4) X-ray Ghost Lines. Occasionally, x-radiation from an element other than the x-ray source anode material impinges upon the sample, resulting in small peaks corresponding to the most intense spectral peaks but displaced by a characteristic energy interval. These lines may result from Mg impurity in the Al anode or vice versa, Cu from the anode base structure, oxidation of the anode, or generation of x-ray photons in the Al foil x-ray window. On occasion, such lines can originate via generation of x-rays within the sample itself. This last possibility is rare because the probability of x-ray emission is low relative to Auger electron emission. Nevertheless, such minor lines can be puzzling. Table 3 indicates where such peaks are most likely to occur relative to the most intense photoelectron lines. Because such ghost lines rarely appear with nonmonochromatic x-ray sources and are not possible with monochromatic x-ray sources, they should not be considered in line identification until all other possibilities are excluded.

Table 3. Displacement of X-ray Ghost Lines (eV)

Contaminating	Anode Material		
Radiation	Mg	Al	
Ο (Κα)	728.7	961.7	
Cu (La)	323.9	556.9	
Mg (Ka)	_	233.0	
Al (Kα)	-233.0	_	

(5) Shake-Up Lines. Not all photoelectric processes are simple ones which lead to the formation of ions in the ground state, but there is a finite probability that the ion will be left in an excited state a few electron volts above the ground state. In this event, the kinetic energy of the emitted photoelectron is reduced, with the difference corresponding to the energy difference between the ground state and the excited state. This results in the formation of a satellite peak a few electron volts lower in kinetic energy (higher in binding energy) than the main peak. For example, the characteristic shake-up line for carbon in aromatic compounds, a shake-up process involving the energy of the $\pi \rightarrow \pi^*$ transition, is shown in Figure 7.

In some cases, most often with paramagnetic compounds, the intensity of the shake-up satellite may

approach that of the main line. More than one satellite of a principal photoelectron line can also be observed, as shown in Figure 8. The occurrence of such lines is sometimes also apparent in Auger spectral contours (Figure 9). The displacements and relative intensities of shake-up satellites can sometimes be useful in identifying the chemical state of an element, as discussed in Section E.3.d. (p. 24).

(6) Multiplet Splitting. Emission of an electron from a core level of an atom that itself has a spin (unpaired electrons in valence levels) can create a vacancy in two or more ways. The coupling of the new unpaired electron left after photoemission from an s-type orbital with other unpaired electrons in the atom can create an ion with several possible final state configurations and as many energies. This results in a photoelectron line which is split asymmetrically into several components similar to the one shown in Figure 10.

Multiplet splitting also occurs in the ionization of p levels, but the result is more complex and subtle. In favorable cases, it results in an apparent slight

Figure 8. Examples of shake-up lines (s) of the copper 2p observed in copper compounds.

> increase in the spin doublet separation, evidenced in the separation of the $2p_{1/2}$ and $2p_{3/2}$ lines in first-row transition metals, and in the generation of a less easily noticed asymmetry in the line shape of the components. Often such effects on the p doublet are obscured by shake-up lines.

> (7) Energy Loss Lines. With some materials, there is an enhanced probability for loss of a specific

E. Data Interpretation

Perkin-Elmer Corporation Physical Electronics Division

E. Data Interpretation

Figure 9. Examples of the effects of chemical states on Auger line shapes in nickel compounds.

amount of energy due to interaction between the photoelectron and other electrons in the surface region of the sample (Figure 11). The energy loss phenomenon produces a distinct and rather sharp hump 20-25 eV above the binding energy of the parent line. Under certain conditions of spectral display, energy loss lines can cause confusion. Such phenomena in insulators are rarely sharper than that shown in Figure 11 and are usually much more muted. They are different in each solid medium.

With metals, the effect is often much more dramatic, as indicated by the loss lines for aluminum shown in Figure 12. Energy loss to the conduction electrons occurs in well-defined quanta characteristic of each metal. These plasmons arise from group oscillations of the conduction electrons. The photoelectron line, or the Auger line, is successively mirrored at intervals of higher binding energy with reduced intensity. The energy

interval between the primary peak and the loss peak is called the plasmon energy. The so-called bulk plasmons are the more prominent of these lines. A second series, the surface plasmons, exists at energy intervals determined approximately by dividing the bulk plasmon energy by the square root of two. The effect is not easily observed in nonconductors, nor is it prominent in all conductors. Plasmon lines are especially prominent in the Groups Ia and IIa metal spectra in this handbook.

(8) Valence Lines and Bands. Lines of low intensity occur in the low binding energy region of the

Figure 11. Energy loss envelope from the O Is line in Al₂O₃ (sapphire).

Figure 12. Surface (s) and bulk (b) plasmon lines associated with the Al 2s at normal and grazing take-off angles.

spectrum between the Fermi level and 10-20 eV binding energy. These lines are produced by photoelectron emission from molecular orbitals and from solid state energy bands. Differences between insulators and conductors are especially noted by the absence or presence of electrons from conduction bands at the Fermi level. Valence bands may also be used to distinguish between materials where the core level XPS photoelectron lines are quite similar in shape and position. Appendix D contains valence band spectra of several materials.

2. Line Identification

In general, interpretation of the XPS spectrum is most readily accomplished first by identifying the lines that are almost always present (specifically those of C and O), then by identifying major lines and associated weaker lines, and lastly by identifying the remaining weak lines. Most modern, commercially available spectrometers have peak identification algorithms within their data reduction packages. Poor signal-to-noise of the data or database limitations may require manual identification of some peaks. The following step-by-step procedure simplifies the data interpretation task and minimizes data ambiguities.

Step 1. The C 1s, O 1s, C (KLL) and O (KLL) lines are usually prominent in any spectrum. Identify these lines first along with all derived x-ray satellites and energy loss envelopes.

Step 2. Identify other intense lines (Appendix J) present in the spectrum, then label any related satellites and other less intense spectral lines associated with those elements. The energy positions of the less intense lines are noted in the line position table with the spectra. Keep in mind that some lines may be interfered with by more intense, overlapping lines from other elements. The most serious interferences by the C and O lines, for example, are Ru 3d by C 1s, V 2p and Sb 3d by O 1s, I (MNN) and Cr (LMM) by O (KLL), and Ru (MNN) by C (KLL).

Step 3. Identify any remaining minor lines. In doing this, assume they are the most intense lines of an unknown element. If not, they should already have been identified in the previous steps. Again, keep in mind possible line interferences. Small lines that seem unidentifiable can be ghost lines. Use Table 3 (p. 18) to check for the more intense parent photoelectron lines.

Step 4. Check the conclusions by noting the spin doublets for p, d and f lines. They should have the right separation (cf. spin orbit splitting for individual elements and Appendices G and H) and should be in the correct intensity ratio. The ratio for p lines should be about 1:2, d lines 2:3 and f lines 3:4. P lines, especially 4p lines, may be less than 1:2.

3. Chemical State Identification

The identification of chemical states primarily depends. on the accurate determination of line energies. To determine line energies accurately, the voltage scale of the instrument must be precisely calibrated (cf. Section D.2., p. 15), a line with a narrow sweep range must be recorded with good statistics (of the order of several thousand counts-per-channel above background), and accurate correction must be made for static charge if the sample is an insulator.

a. Determining Static Charge on Insulators. During analysis, insulating samples tend to acquire a steadystate charge of as much as several volts. This steadystate charge is a balance between electron loss from the surface by emission and electron gain by conduction or by acquisition of slow or thermal electrons from the vacuum. The steady-state charge, usually positive, can be minimized with an adjacent neutralizer or flood gun. It is often advantageous to do this to reduce differential charging and sharpen the spectral lines.

A serious problem is exactly determining the extent of charging. Any positive charging retards outgoing electrons and tends to make the peaks appear at higher binding energies, whereas excessive charge compensation can make the peaks shift to lower binding energies. The following are four methods which are usually valid for charge correction on insulating samples:

(1) Measurement of the position of the C 1s line from adventitious hydrocarbon nearly always present on samples introduced from the laboratory environment or from the glove box. This line, on unsputtered inert metals such as Au or Cu, appears at 284.8 eV, so any shift from this value can be taken as a measure of the static charge. At this time, it is not known whether a reproducible line position exists for C remaining on the surface after ion beam etching.

(2) The use of an internal standard, such as a hydrocarbon moiety of a polymer sample. For the study of supported catalysts or similar materials, one can adopt a suitable value for a constituent of the support and use that to interrelate binding energies of different samples. One must be certain that treatments of the various samples are not so different that the inherent binding energies of support constituents are changed.

(3) The use of a normally insulating sample so thin that it effectively does not insulate. This can be assumed if the spectrum of the underlying conductor appears in good intensity and if line positions are not affected by changes in electron flux from the charge neutralizer.

(4) For the study of insulating polymer films, binding energies of the C functional groups may also be determined by applying a small amount of poly(dimethyl siloxane) solution (10^{-6} M) to the sample surface and charge reference to the Si 2p of the silicone (at about 102.1 eV).

Some precautions should be kept in mind. If the sample is heterogeneous on even a micrometer scale, particles of different materials can be charged to different extents, and interpretation of the spectrum is complicated accordingly. One cannot physically mix a conducting standard like Au or graphite of micron dimensions with a powder and validly use the Au or graphite line in order to correct for static charge. Differential charging can be minimized to a great extent by using a flood source of lowenergy electrons.

b. Photoelectron Line Chemical Shifts and Separations. An important advantage of XPS is its ability to obtain information on chemical states from the variations in binding energies, or chemical shifts, of the photoelectron lines. While many attempts have been made to calculate chemical shifts and absolute binding energies, the factors involved (especially in the solid state) are imperfectly understood, and one must rely on experimental data from standard materials. The tables accompanying the spectra in this handbook record considerable data from the literature as well as data obtained specifically for this handbook. All literature data have been carefully evaluated to the instrumental calibration and static charge reference values given above and are, therefore, directly comparable.

Because occasional line interferences do occur, it is sometimes necessary to use a line other than the most intense one in the spectrum. Chemical shifts of a minor line are within 0.2 eV of the chemical shift of the primary line. However, exceptional separations can occur in paramagnetic materials because of multiplet splitting. Separations of photoelectron lines can be determined approximately from the line position tables in Appendices G and H.

c. Auger Line Chemical Shifts and the Auger Parameter. Core-type Auger lines (transitions ending with double vacancies below the valence levels) usually have at least one component that is narrow and intense, often nearly as intense as the strongest photoelectron line (cf. spectra for F, Na, As, In, Te and Pb). There are four core Auger groups that can be generated by Mg or Al x-rays: the KLL (Na, Mg); the LMM (Cu, Zn, Ga, Ge, As, Se); the MNN (Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba); and NOO (Th, U). The MNN lines in the rare earths, while accessible, are very broad because of multiplet splitting and shake-up phenomena with most of the compounds. Valence-type Auger lines (final states with vacancies in valence levels) - such as those for O and F (KLL); Mn, Fe, Co and Ni (LMM); and Ru, Rh and Pd (MNN) - can be intense and are, therefore, also useful. Chemical shifts occur with Auger lines as well as with photoelectron lines. The chemical shifts are different from those of the photoelectron lines, but they are often more pronounced. This can be very useful for identifying chemical states, especially in combination with photoelectron chemical shift data. If data for the various chemical states of an element are plotted with the binding energy of the photoelectron line on the abscissa and the kinetic energy of the Auger line on the ordinate, a two-dimensional chemical state plot can be obtained. Such plots are in Appendix A for F, Na, Al, Si, S, Cu, Zn, As, Se, Ag, Cd, In, Sn and Te.

With chemical states displayed in two dimensions, the Auger parameter method becomes more powerful as a tool for identifying the chemical components than using photoelectron chemical shifts alone. In the format adopted for this handbook, the kinetic energy of the Auger line is plotted against the binding energy of the photoelectron line, with the latter plotted in the -x direction (kinetic energy is still, implicitly, +x). The kinetic energy of the Auger electron, referred to the Fermi level, is easily calculated by subtracting from the photon energy the position of the Auger line on the binding energy scale.

With this arrangement, each diagonal line represents all values of equal sums of Auger kinetic energy and

Perkin-Elmer Corporation Physical Electronics Division

23

photoelectron binding energy. The Auger parameter, α , is defined as,

$$\alpha = KE_A - KE_P = BE_P - BE_A$$
(2)

or as the difference in binding energy between the photoelectron and Auger lines. This difference can be accurately determined because static charge corrections cancel. With all kinetic and binding energies referenced to the Fermi level, and recalling that:

$$KE = hv - BE$$
(3)

then ...

$$KE_A + BE_P = hv + \alpha \tag{4}$$

or the sum of the kinetic energy of the Auger line and the binding energy of the photoelectric line equals the -Auger parameter plus the photon energy. A plot showing Auger kinetic energy versus photoelectron binding energy then becomes independent of the photon energy.

In general, polarizable materials, especially conductive materials, have a high Auger parameter, while insulating compounds have a lower Auger parameter.

d. Chemical Information from Satellite Lines and Peak Shapes

(1) Shake-up Lines. These satellite lines have intensities and separations from the parent photoelectron line that are unique to each chemical state (Figure 8, p. 19). Some Auger lines also exhibit radical changes with chemical state that reflect these processes (Figure 9, p. 20). With transition elements and rare earths, the absence of shake-up satellites is usually characteristic of the elemental or diamagnetic states. Prominent shakeup patterns typically occur with paramagnetic states. Table 4 is a guide to some expected paramagnetic states.

Handbook of X-ray Photoelectron Spectroscopy

Table 4. General Guide to Paramagnetic Species

Multiplet splitting and shake-up lines are generally expected in the paramagnetic states below:

1

tomic No.	Paramagnetic States	Diamagnetic States
22	Ti(II) Ti(III)	Ti(IV)
23	V(II), V(III), V(IV)	V(V)
24	Cr(II), Cr(III), Cr(IV), Cr(V)	Cr(VI)
25	Mn(II), Mn(III), Mn(IV), Mn(V)	Mn(VII)
26	Fe(II), Fe(III)	K4Fe(CN)6, Fe(CO)4Br2
27	Co(II), Co(III)	CoB, Co(NO2)3NH3)3.
		K3Co(CN)6, Co(NH3)6Cl
28	Ni(II)	K2Ni(CN)4.
		square planar complexes
29	Cu(II)	Cu(I)
42	Mo(IV), Mo(V)	Mo(VI), MoS2, K4Mo(CN
44	Ru(III), Ru(IV), Ru(V)	Ru(II)
47	Ag(II)	Ag(I)
58	Ce(III)	Ce(IV)
59-70	Pr, Nd, Sm, Eu, Gd, Tb, Dy,	
	Ho, Er, Tm, Yb compounds	
74	W(IV), W(V)	W(VI), WO2, WCl4,
		WC, K4W(CN)8
75	Re(II), Re(III), Re(IV),	Re(VII), ReO3
	Re(V), Re(VI)	
76	. Os(III), Os(IV), Os(V)	Os(II), Os(VI), Os(VIII)
77	Ir(IV)	Ir(III)
92	U(III), U(IV)	U(VI)

(2) Multiplet Splitting. On occasion, the multiplet splitting phenomenon can also be helpful in identifying chemical states. The 3s lines in the first series of transition metals, for example, exhibit separations characteristic of each paramagnetic chemical state. The 3s line, however, is weak and therefore is not often useful analytically. The 2p doublet separation is also affected by multiplet splitting, and the lines are more intense. The effect becomes very evident with Co compounds where the separation varies up to 1 eV. When first-row transition metal compounds are under study, it is

\$

useful to accurately record these line separations and make comparisons with model compounds.

(3) Auger Line Shape. Valence-type Auger transitions form final-state ions with vacancies in molecular orbitals. The distribution of the group of lines is strongly affected, therefore, by the nature of the molecular orbitals in the different chemical states. Although little has yet been tabulated on this subject, the spectroscopist should bear in mind the possible utility of Auger line shapes.

4. Quantitative Analysis

For many XPS investigations, it is important to determine the relative concentrations of the various constituents. Methods have been developed for quantifying the XPS measurement utilizing peak area and peak height sensitivity factors. The method which utilizes peak area sensitivity factors typically is the more accurate and is discussed below. This approach is satisfactory for quantitative work. For transition metal spectra with prominent shake-up lines, it is best to include the entire 2p region when measuring peak area.

For a sample that is homogeneous in the analysis volume, the number of photoelectrons per second in a specific spectra peak is given by:

 $I = nf\sigma\theta y\lambda AT$ (5)

where n is the number of atoms of the element per cm³ of the sample, f is the x-ray flux in photons/cm²-sec, σ is the photoelectric cross-section for the atomic orbital of interest in cm², θ is an angular efficiency factor for the instrumental arrangement based on the angle between the photon path and detected electron, y is the efficiency in the photoelectric process for formation of photoelectrons of the normal photoelectron energy, λ is the mean free path of the photoelectrons in the sample, A is the area of the sample from which photoelectrons are detected, and T is the detection efficiency for electrons emitted from the sample. From Equation 5:

$$n = I/f\sigma\theta y\lambda AT$$
 (6)

The denominator in Equation 6 can be defined as the atomic sensitivity factor, S. If we consider a strong line from each of two elements, then:

$$\frac{n_1}{n_2} = \frac{I_1/S_1}{I_2/S_2}$$
(7)

This expression may be used for all homogeneous samples if the ratio S_1/S_2 is matrix-independent for all materials. It is certainly true that such quantities as σ and λ vary somewhat from material to material (especially λ), but the ratio of each of the two quantities σ_1/σ_2 and λ_1/λ_2 remains nearly constant. Thus, for any spectrometer, it is possible to develop a set of relative values of S for all of the elements. Multiple sets of values may be necessary for instruments with multiple x-ray sources at different angles relative to the analyzer.

A general expression for determining the atom fraction of any constituent in a sample, C_x , can be written as an extension of Equation 7:

$$C_x = \frac{n_x}{\sum n_i} = \frac{I_x/S_x}{\sum I_i/S_i}$$
(8)

Values of S based on peak area measurements are indicated in Appendices E and F. The values of S in the appendices are based on empirical data (C.D. Wagner et al. *Surf. Interface Anal.* 3, 211 (1981)) which have been corrected for the transmission function of the spectrometer. The values in the appendix are only valid for and should only be applied when the electron energy analyzer used has the transmission characteristics of the SCA supplied by Perkin-Elmer. An example of the application of Equation 8 to analysis of a sample of

Figure 13. Quantitative analysis of poly(tetrafluoroethylene).

known composition, poly(tetrafluoroethylene), is shown in Figure 13.

The use of atomic sensitivity factors in the manner described will normally furnish semiquantitative results (within 10-20%), except in the following situations:

a. The technique cannot be applied rigorously to heterogeneous samples. It can be useful with heterogeneous samples in measuring the relative number of atoms detected, but one must be conscious that the microscopic character of the heterogeneous system influences the quantitative results. Moreover, an overlying contamination layer has the effect of diminishing the intensity of high binding energy peaks more than that of low binding energy peaks. **b.** Transition metals, especially of the first series, have widely varying and low values of y, whereas y for the other elements is rather uniform at about 0.8 eV. Thus, a value of S determined on one chemical state for a transition metal may not be valid for another chemical state. This effect can be minimized by including shake-up peaks in the area measurement.

c. When peak interferences occur, alternative lines must sometimes be used. The ratios of spin doublets (except 4p) are rather uniform, and the weaker of the pair can often be substituted. The spectra of the elements should be consulted, but caution must be exercised because the spectra of the elements themselves can be different from the spectra of their compounds.

d. Occasionally, an x-ray satellite from an intense photoelectron line interferes with measurement of a weak component. A mathematical approach can then be used to subtract the x-ray satellite before the measurement.

For quantitative work, check the spectrometer operation frequently to ensure that analyzer response is constant and optimum. A useful test is the recording of the three widely spaced spectral lines from Cu. Measurement of the peak height in counts-per-second should be made on 20-volt-wide scans of the 2p_{3/2}, LMM Auger and 3p lines. Maintenance of such records makes it easy to notice if an instrument change occurs that would affect quantitative analysis.

5. Determining Element Location

a. Depth. There are four methods of obtaining information on the depth of an element in the sample. The first two methods described below utilize the characteristics of the spectrum itself but provide limited information. The third provides more detailed information but is attended by certain problems. The fourth utilizes measurements at two or more electron escape angles.

(1) The presence or absence of an energy loss peak or envelope indicates whether the emitting atoms are in the bulk or at the surface. Because electrons from surface atoms do not traverse the bulk, peaks from the surface atoms are symmetrical above level baselines on both sides, and the energy loss peak is absent. For a homogeneous sample, peaks from all elements will have similar inelastic loss structures.

(2) Elements whose spectra exhibit photoelectron lines widely spaced in kinetic energy can be approximately located by noting the intensity ratio of the lines. In the energy range above approximately 100 eV, electrons moving through a solid with lower kinetic energy are attenuated more strongly than those with higher kinetic energy. Thus, for a surface species, the low kinetic energy component will be relatively stronger than the high kinetic energy component, compared to that observed in the pure material. The data for homogeneous bulk solids can be compared with intensity ratios observed on unknowns to determine qualitatively the distribution of the element in the sample. Suitable elements include Na and Mg (1s and 2s); Zn, Ga, Ge and As (2p3/2 and 3d); and Cd, In, Sn, Sb, Te, I, Cs and Ba (3p_{3/2} and 4d or 3d_{5/2} and 4d).

When the element is in a bulk homogeneous layer beneath a thin contaminating layer, the characteristic intensity ratio is modified in the opposite direction. Thus, for a pair of lines from subsurface species, the low kinetic energy line will be attenuated more than the high kinetic energy line, distorting the characteristic intensity ratio. By observing such intensity ratios and comparing them with the pure bulk elements, it is possible to deduce whether the observed lines are from predominantly surface-, subsurface- or homogeneously distributed material. (3) Depth profiling can be accomplished using controlled erosion of the surface by ion sputtering. Table 5 lists some data on sputter rates as a general guide. One can use this technique on organic materials, but few data are available for calibration. Chemical states are often changed by the sputter technique, but useful information on elemental distribution can still be obtained.

Table 5. Relative Sputter Rates at 4 kV.

Target	Sputter Rate	
Ta2O5	1.00	
Si	0.90	
SiO ₂	0.85	
Pt	2.20	
Cr	1.40	
Al	0.95	
Au	4.10	

Another useful method of controlled erosion, especially of organic materials, is reaction with oxygen atoms from a plasma. This technique may also change the chemical states in the affected surface. Further, because the elements differ in their rates of reaction with oxygen atoms, the rate of removal of surface materials will be sample dependent.

(4) In XPS studies, the sample-mounting angle is not usually critical, though it does have some effect on the spectra. Very shallow electron take-off angles accentuate the spectrum of any component segregated on the surface, whereas a sample mounted at an angle normal to the analyzer axis minimizes the contribution from such a component. This effect can be used to estimate the depth of layers on or in the surface. This effect is not limited to flat surfaces, because angular dependence is even observed with powders, though the effects are muted. The spectrometer used to obtain the spectra presented in this handbook in-

Perkin-Elmer Corporation Physical Electronics Division

27

tegrates the signal over only a narrow range of take-off angles.

It is possible to change the angle between the plane of the sample surface and the angle of entrance to the analyzer. At 90° with respect to the surface plane, the signal from the bulk is maximized relative to that from the surface layer. At small angles, the signal from the surface becomes greatly enhanced, relative to that from the bulk. The location of an element can thus be deduced by noting how the magnitude of its spectral peaks changes with sample orientation in relation to those from other elements. The analysis depth may be estimated by $d = \lambda \sin \theta$, where d is the analysis depth of the overlayer, λ is the inelastic mean free path, and θ is the take-off angle of the analyzed electrons.

Perkin-Elmer SCAs permit angle-dependent studies by simply varying the angle of the sample surface with respect to the input lens of the analyzer. The magnification of the lens determines the half-angle acceptance of the analyzer. An example of the information that can be gained through the use of this capability is shown in Figure 14. Data were obtained at normal (near 90°) and grazing (near 15°) take-off angles from a silicon sample with a thin silicon oxide overlayer. The observed intensity ratio of oxidized to elemental Si is much greater at the low take-off angle.

b. Surface Distribution. Many current XPS systems have the capability to obtain data from areas as small as $30 \ \mu\text{m}$ in diameter. This relatively high lateral resolution allows for the acquisition of XPS maps which show both elemental and chemical state information.

Figure 14. An example of the enhanced surface sensitivity achieved by varying the electron take-off angle. A thin oxide on silicon is enhanced at the low take-off angle.

c. Insulating Domains on a Conductor. The occurrence of steady-state charging of an insulator during analysis sometimes has useful consequences. Microscopic insulating domains on a conductor reach their own steady-state charge, while the conductor remains at spectrometer potential. Thus, an element in the same chemical state in both phases will exhibit two peaks. If a change is made in the supply of low-energy electrons which stabilize the charge (as from the neutralizer filament) or if a bias is applied to the conductor, the spectral peaks from the insulating phase will move relative to those from the conducting phase. For such heterogeneous systems, this can be an extremely useful technique. It makes it possible to determine whether the elements that contribute to the overall spectrum are in the conducting phase, the insulating phase or both.

F. How to Use this Handbook

1. Qualitative Analysis

Elemental and chemical identification of sample constituents can be performed by combining the information in the survey spectra with the binding energy tables of Appendices G, H and J.

a. Identify all major photoelectron peaks by using the line position tables in Appendix J.

b. Compare the elemental identifications with the elemental survey spectra to see that line positions and relative intensities are consistent. Also note the positions of the Auger electron peaks.

c. Review Section E (pp. 16-28) to account for fine structures such as energy loss lines, shake-up peaks, satellite lines, etc., not identified in the handbook spectra or energy tables.

d. Identify any remaining peaks assuming they are intense photoelectron or Auger lines using Appendices G or H.

e. Chemical state identification can be determined from high resolution spectra of the strongest photoelectron and sharpest Auger lines.

(1) Correct binding energies for static charging of insulators. When applicable, charge reference the binding energy scale to the C 1s photoelectron peak at 284.8 eV.

(2) Determine the chemical state from the measured shifts in the photoelectron binding ener-

gies by comparing the binding energy to the charts with the standard spectra and with the tabulated data in Appendix B.

(3) As suggested above, much about the chemical state can be learned from the magnitude and position of shake-up lines as well as from the energy and shape of valence Auger lines.

(4) For the elements F, Na, Al, Si, S, Cu, Zn, As, Se, Ag, Cd, In, Sn and Te, the Auger parameter tables in Appendix A may prove useful. The Auger line positions may be converted to kinetic energy by subtracting from the photon energy (AI = 1486.6 eV, Mg = 1253.6 eV). Note the location of the points for Auger kinetic energy and photoelectron binding energy on the respective elemental plot. Proximity of the experimental points to those of recorded chemical states should be considered probable identification. Note that experimental error is much greater along the Auger parameter grid than normal to the grid lines.

2. Quantification

The atomic sensitivity factors presented in Appendices E and F are applicable to the Perkin-Elmer Model 10-360 SCA and the Omni Focus III lens. A simplified expression to determine the atomic concentration of any element is given by Equation 8 (p. 25). However, the accuracy is limited by the assumptions made in Section E.4. (p. 25).

II. Standard XPS Spectra of the Elements

Standard Spectra of the Elements

This section of the handbook contains survey spectra of 81 elements, high resolution spectra of the most useful photoelectron lines, a chart of binding energies for each of the observed photoelectron and major Auger electron peaks, and a photoelectron chemical state binding energy chart for each of the elements. Used in combination with the appendices, the survey spectra aid in elemental identification, while the high-resolution spectra and binding energy data aid in the identification of chemical states.

Survey Spectra

The survey data include all of the lines which are normally useful. For most elements, the survey data were acquired with both a monochromatic Al x-ray source and a nonmonochromatic Mg x-ray source. When survey spectra for two compounds are presented, the monochromatic source is used for both. The photon source for each survey is noted on the survey. The photoelectron and Auger lines for the element of interest are identified. Lines which occur due to other elements are only designated by the elemental symbol, and x-ray satellites and energy loss lines are not noted. For many elements, the Auger peaks are presented in expanded form.

The ordinate is left undesignated, but the general contours and intensity ratios of the spectra are typical of measurements made using a Perkin-Elmer Model 10-360 SCA with an Omni Focus lens.

High-Resolution Spectra

The high-resolution spectra of the most useful photoelectron peaks are ' presented. Unless otherwise noted, the high-resolution data were acquired using the same photon source as the survey on the same page. The binding energy of the main line is noted and when appropriate, the spin orbit separation (Δ) is given. The lines from insulators were charge-corrected to adventitious hydrocarbon at 284.8 eV. The spectra of the inert gas atoms implanted in graphite or silicon deserve special mention. The high-resolution data often show an asymmetric peak shape or a second resolvable peak when a single symmetric peak is expected. The intensity of the second, high binding energy peak is dependent on the implantation energy and is diminished at lower energies. The spectra are of inert gas atoms implanted at 4 kV.

Photoelectron and Auger Electron Line Position Tables

The photoelectron and Auger line position tables reflect the energies of the elemental peaks observed in this handbook. For oxidized or reduced species, the measured values may differ by a few electron volts.

Chemical State Binding Energy Tables

The binding energy tables have been constructed to reflect the general changes in binding energy with change in oxidation state or chemical environment. A more extensive listing with specific binding energy values for more than 1500 compounds is presented in Appendix B.

Abbreviations in the chemical state database are as follows: $acac = acetyl acetonate; metallocene = metal (C_5H_5)_2; Bu = butyl; Et = ethyl; Me = methyl; Ph = phenyl; OAc = acetate.$

Perkin-Elmer Corporation Physical Electronics Division Lithium Li Atomic Number 3

Φ

34

1

Atomic Number 3

Perkin-Elmer Corporation Physical Electronics Division

25

Perkin-Elmer Corporation Physical Electronics Division

Perkin-Elmer Corporation Physical Electronics Division

Nitrogen N Atomic Number 7

Perkin-Elmer Corporation Physical Electronics Division

Φ

Oxygen 0 Atomic Number 8

Perkin-Elmer Corporation Physical Electronics Division

FluorineFAtomic Number9

 $\Phi_{\rm P}$

Perkin-Elmer Corporation Physical Electronics Division

Sodium Na Atomic Number 11

Φ

Perkin-Elmer Corporation Physical Electronics Division

Φ

Magnesium Mg Atomic Number 12

Perkin-Elmer Corporation Physical Electronics Division

Φ

53

Aluminum Al Atomic Number 13

Aluminum Al

Atomic Number 13

Silicon Si Atomic Number 14

Perkin-Elmer Corporation Physical Electronics Division

Phosphorus P Atomic Number 15

Atomic Number 15

Perkin-Elmer Corporation Physical Electronics Division

Physical Electronics Division

SulfurSAtomic Number16

Perkin-Elmer Corporation Physical Electronics Division

Φ

Perkin-Elmer Corporation Physical Electronics Division

Chlorine Cl Atomic Number 17

Chlorine Cl Atomic Number 17

Perkin-Elmer Corporation Physical Electronics Division

Argon Ar Atomic Number 18

6.1

Perkin-Elmer Corporation Physical Electronics Division

Potassium K Atomic Number 19

Perkin-Elmer Corporation Physical Electronics Division

Φ

Calcium Ca Atomic Number 20

Perkin-Elmer Corporation Physical Electronics Division

Scandium Sc Atomic Number 21

410

400

Binding Energy (eV)

M1
Titanium Ti Atomic Number 22

Perkin-Elmer Corporation Physical Electronics Division

Φ

Vanadium V Atomic Number 23

	Line Positions (eV)							
hotoelecti	ron Lines							
	2s	2p _{1/2}	2p _{3/2}	3s	3p			
	627	520	512	66	37			
uger Line	LoaMoaMo	a Li	M23M45 (^I P)	L3M45M45			
	1048	<i></i>	1014	-1	977	(Al)		
	815		781		744	(Mg)		
÷.		19 (A)						

Chromium Cr Atomic Number 24

Handbook of X-ray Photoelectron Spectroscopy

	Line Positions (eV)										
hotoelectron Lines											
	- 2s	2p1/2	2p _{3/2}	3s	3p						
	696	583	574	75	43						
uger Lir	ies										
	L23M23M	23 L3	M ₂₃ M ₄₅ (P)	L3M45M4	5					
	997		959		917	(Al)					
	764		726		684	(Ma)					

Manganese Mn Atomic Number 25

Manganese Mn Atomic Number 25

Perkin-Elmer Corporation Physical Flectronics Division

n+

Cobalt Co Atomic Number 27

Perkin-Elmer Corporation Physical Electronics Division

Nickel Ni Atomic Number 28

......

Copper Cu Atomic Number 29

Zinc Zn Atomic Number 30

Perkin-Elmer Corporation Physical Electronics Division

Gallium Ga Atomic Number 31

Perkin-Elmer Corporation Physical Electronics Division

N1

Germanium Ge Atomic Number 32

Arsenic As Atomic Number 33

50

40

Binding Energy (eV)

Perkin-Elmer Corporation Physical Electronics Division

Sulfides AsI₃ AsBr₃ As₂O₃ As₂O₅

-

Selenium Se Atomic Number 34

Selenium Se Atomic Number 34

Perkin-Elmer Corporation Physical Electronics Division

Bromine Br Atomic Number 35

Perkin-Elmer Corporation Physical Electronics Division

99

Krypton Kr Atomic Number 36

Perkin-Elmer Corporation · Physical Electronics Division

Φ

Rubidium Rb

Atomic Number 37

StrontiumSrAtomic Number38

Perkin-Elmer Corporation Physical Electronics Division

YttriumYAtomic Number39

Φ
Zirconium Zr Atomic Number 40

Perkin-Elmer Corporation Physical Electronics Division

nelectro	n Lines			÷		
a a	n Enico					
3s 467	3p _{1/2} 376	3p _{3/2} 361	3d _{3/2} 205	3d _{5/2} 202	4s 56	4p 31
er Lines					4	
	M45N23V	I	M ₄₅ VV			
	M45N23V 1319	I	M45VV 1287	(Al)		
	M ₄₅ N ₂₃ V 1319 1086	I	M ₄₅ VV 1287 1054	(Al) (Mg)		42
	M ₄₅ N ₂₃ V 1319 1086	I	M ₄₅ VV 1287 1054	(Al) (Mg)		4

Perkin-Elmer Corporation Physical Electronics Division

Molybdenum Mo Atomic Number 42

3p3/2	3d _{3/2}	3d5/2	4s	4p
394	231	228	63	36
*				
/	M45VV			
	1264	(Al)		
	1031	(Mg)		
e a				
	3p _{3/2} 394	3p _{3/2} 3d _{3/2} 394 231 V M ₄₅ VV 1264 1031	3p _{3/2} 3d _{3/2} 3d _{5/2} 394 231 228	3p _{3/2} 3d _{3/2} 3d _{5/2} 4s 394 231 228 63

Φ

113

ş

Ruthenium Ru Atomic Number

44

Perkin-Elmer Corporation Q Physical Electronics Division

Rhodium Rh Atomic Number 45

....

Perkin-Elmer Corporation Physical Electronics Division

Palladium Pd Atomic Number 46

		Line	Position	s (eV)		
hotoelectro	on Lines					
3s 671	3p _{1/2} 560	3p _{3/2} 533	3d _{3/2} 340	3d _{5/2} 335	4s 88	4p 52
uger Lines	6					
	M45N23V	ſ	M ₄₅ VV	2000		
	1211 978		1159 926	(Al) (Mg)		
		1.1				

Silver Ag Atomic Number 47

Perkin-Elmer Corporation Physical Electronics Division

121

362

372

Binding Energy (eV)

Cadmium Cd Atomic Number 48

Indium In Atomic Number 49

Perkin-Elmer Corporation Physical Electronics Division

Perkin-Elmer Corporation Physical Electronics Division

Φ

Tin Sn Atomic Number 50

Binding Energy (eV)

4d

25

Perkin-Elmer Corporation Physical Electronics Division

Antimony Sb Atomic Number 51

ţ

		Line	Position	ns (eV)			
Neterlet	T.						
notoelect	on Lines						
20	301/2	3p3/2	3d3/2	3d5/2	4s	4p	4d
38	~P112						
944	813	767	537	528	153	99	33
944 Auger Lin	813	767	537	528	153	99	33
944 Auger Lin	813 813 M5N45N4	767 5 I	537 M4N45N4	528	153	99	33
944 944 Auger Lin	813 813 M ₅ N ₄₅ N ₄₅ N ₄ 1032	767 5 1	537 M4N45N4 1022	528 (AI)	153	99	33

Perkin-Elmer Corporation Physical Electronics Division

Φ

Tellurium Te

Atomic Number 52

ration

IodineIAtomic Number53

Φ

Perkin-Elmer Corporation Physical Electronics Division

XenonXeAtomic Number54

			Line	Positions	s (eV)				
hotoe	electro	on Lines							_
	3s 1141	3p _{1/2} 996	3p _{3/2} 934	3d _{3/2} 683	3d _{5/2} 670		÷.		
	4s 207	4p 139	4d _{3/2} 63	4d _{5/2} 61	5s 17	1			
Auger	Lines	\$						 	
		M5N45N45		M4N45N45					
		955		942	(Al)				
		722		709	(Mg)				

XenonXeAtomic Number54

700

675 Binding Energy (eV)

Perkin-Elmer Corporation Physical Electronics Division

Φ

135

Cesium Cs Atomic Number 55

Perkin-Elmer Corporation Physical Electronics Division

Φ

Barium Ba Atomic Number 56

Perkin-Elmer Corporation Physical Electronics Division

Lanthanum	La	
Atomic Number	57	

		Line	Position	ns (eV)		
hotoalaatu	. Lines					
notoerectro	n Lines					
3p1/2	3p3/2	3d3/2	3d5/2			
1208	1128	853	836			
As	Anin	Anan	Adam	Adam	50	50
275	213	197	106	103	34	17
Auger Lines						
	M5N45N4	5	M4N45N4	15		
	867		854	(Al)		
	634	1	621	(Mg)		

Perkin-Elmer Corporation Physical Electronics Division

 Φ

Cerium Ce Atomic Number 58

Ce

CeSe CeCu₂Si₂ CeO2 CeH₃

143
Praseodymium Pr Atomic Number 59

Neodymium Nd Atomic Number 60

Samarium Sm Atomic Number 62

Perkin-Elmer Corporation Physical Electronics Division

Europium Eu Atomic Number 63

Gadolinium Gd Atomic Number 64

Gadolinium Gd

Atomic Number 64

TerbiumTbAtomic Number65

190

Binding Energy (eV)

140

 Auger Lines

 M45N45N45
 M45N45V
 M5VV
 M4VV

 559
 411
 260
 230

 326
 178
 178
 178

(Al)

(Mg)

Dysprosium Dy Atomic Number 66

D

Perkin-Elmer Corporation Physical Electronics Division

Holmium Ho

Atomic Number 67

	4d Binding En	ergy (eV)			
Compound Type	158	159	160	4d = 159.6 eV	٨
Но				and the second s	∫
				200 Binding Energy (eV)	150

Erbium Er Atomic Number 68

		Line P	ositio	ns (eV)			
hotoelectron	Lines						
4s	4p1/2	4p3/2	4d	5s	5p _{1/2}	5p3/2	4f
451	368	321	167	52	31	24	9
uger Lines						•	
M45N45N4	5	M45N45V		M ₅ VV		M ₄ VV	
440		273		98		56	(Al)
		C.					

		Line I	Position	s (eV)			
hotoelectron	n Lines						
4s	4p1/2	4p3/2	4d	5s	5p1/2	5p _{3/2}	4f
470	384	333	175	53	32	25	8
Auger Lines	-	(*) *:			k.		
Ν	M45N45N	45					
	398	(Al)					
		4					

Ytterbium Yb Atomic Number 70

Lutetium Lu Atomic Number 71

Hafnium Hf

Atomic Number 72

ţ,

TantalumTaAtomic Number73

Perkin-Elmer Corporation Physical Electronics Division

Tungsten W Atomic Number 74

Perkin-Elmer Corporation Physical Electronics Division

			Line	Positions	s (eV)			
Photo	electro	on Lines						
	4s	4p1/2	4p3/2	4d3/2	4d5/2	5s	4f5/2	4f7/
	625	518	446	274	260	99	42	40
		N5N67N7		N4N67N7	(41)			
		1089		1076	(Mg)			
					(

Perkin-Elmer Corporation Physical Electronics Division

Osmium Os Atomic Number 76

		Line	Positions	s (eV)	
Photoelectro	n Lines				
4s	4p1/2	4p3/2	4d _{3/2}	4d5/2	0
658	548	471	293	279	
5s*	4f5/2 -	4f7/2	5p		
89	54	51	44		
Auger Lines					
	N5N67N7		N4N67N7		
	1326		1311	(Al)	
	1093		1078	(Mg)	

Perkin-Elmer Corporation Physical Electronics Division

Φ

177

Iridium Ir Atomic Number 77

Perkin-Elmer Corporation Physical Electronics Division
11.24

		Line	Positions	(eV)	
hotoelectro	on Lines				
4s	4p1/2	4p3/2	4d _{3/2}	4d5/2	
725	609	520	332	315	
5s*	4f5/2	4f7/2	5p		
103	74	71	52		
Auger Lines	\$				
	N5N67N7		N4N67N7		
	1334		1317	(Al)	
	1101		1084	(Mg)	
Estimate					

PlatinumPtAtomic Number78

Perkin-Elmer Corporation Physical Electronics Division

Perkin-Elmer Corporation Physical Electronics Division Mercury Hg Atomic Number 80

ŧ

N7O45O45	N5N7O
1412	1246
1179	1013

N4N6O 1230

997

(Al)

(Mg)

115

105 Binding Energy (eV)

.

Perkin-Elmer Corporation Physical Electronics Division

.

Thallium TI Atomic Number 81

Lead Pb Atomic Number 82

Perkin-Elmer Corporation Physical Electronics Division Bismuth Bi Atomic Number 83

Atomic Number 83

Thorium Th Atomic Number 90

Physical Electronics Division

Uranium U Atomic Number 92

.

III. Appendix

Appendix A. Auger Parameters

The following tables plot the binding energy of the most intense photoelectron line versus the kinetic energy of the most intense Auger transition. The Auger parameter plots are useful for further separation of the chemical states.

	Fluorine	
Compound	F 1s Binding Energy (eV)	F KLL Kinetic Energy (eV)
AgF	682.7	659.3
PbF ₂	683.6	658.5
BaF2	683.7	656.2
K ₃ FeF ₆	684.0	656.0
NaF	684.5 -	655.0
CdF ₂	684.5	656.0
CuF ₂	684.5	657.0
CuF ₂	684.5	656.2
CuF ₂	684.5	656.2
LaF3	684.5	658.0
ZnF ₂	684.6	655.6
PrF3	684.6	657.2
SmF ₃	684.6	657.0
K ₂ ZrF ₆	684.6	655.1
CaF ₂	684.8	655.4
NdF3	684.8	657.0
ThF ₄	684.9	657.0
K ₂ TiF ₆	684.9	655.7
SrF ₂	685.0	656.3
NiF ₂	685.0	655.5
LiF	685.1	654.7
InF ₃	685.2	656.4
K ₂ TaF ₇	685.2	655.0
YF ₃	685.3	655.8
Na2TiF6	685.3	655.1
NaSnF3	685.3	655.3
HfF ₄	685.4	655.3
K ₂ NbF ₇	685.4	655.2
Na ₃ AIF ₆	685.5	654.1
MgF ₂	685.8	654.4
CsF	685.9	653.8
Na2GeF6	.685.9	654.0
Na ₂ SiF ₆	686.0	653.0
KSbF ₆	686.6	656.6
NaBF ₄	687.0	652.8
NiOOCCF3	688.4	652.9
$p-(CF_2=CF_2)$	689.0	652.4

	Sodium	
Compound	Na 1s	Na KLL
	Binding Energy (eV)	Kinetic Energy (eV)
Na ₂ SeO ₃	1070.8	991.0
Na ₂ C ₂ O ₄	1070.8	990.5
Na ₂ MoO ₄	1070.9	991.0
NaAsO ₂	1070.9	990.7
NaF	1071.0	998.6
Na ₂ CrO ₄	1071.0	991.2
Na ₃ PO ₄	1071.1	990.1
NaH ₂ PO ₂	1071.1	989.8
Na2SnO3 · 3H2O	1071.1	990.3
NaOAc	1071.1	989.9
NaF	1071.2	998.6
Na ₂ SO ₄	1071.2	989.8
NaOOCCH ₂ SH	1071.2	990.4
Na ₂ SO ₃	1071.3	990.4
Na	1071.4	994.3
Na	1071.4	994.5
NaBr	1071.4 _	990.6
NaNO ₃	1071.4	989.6
Na ₂ CrO ₄	1071.4	991.2
NaCl	1071.5	990.1
Na ₂ CO ₃	1071.5	989.8
Na ₂ HPO ₄	1071.5	989.7
Na ₂ S ₂ O ₃	1071.6	990.1
NaNO ₂	1071.6	989.8
Na ₂ Cr ₂ O ₇	1071.6	990.6
NaI	1071.7	991.2
NaBr	1071.7	990.6
Na ₂ CO ₃	1071.7	989.8
NaOAc	1071.7	989.9
Na	1071.8	994.3
NaC1	1071.8	990.1
NaCl	1072.5	990.0
Na ₂ O	1072.5	989.8
Mol Sieve Y	1072.6	987.8
NaBF ₄	1072.7	987.1

1

ŝ

Perkin-Elmer Corporation Physical Electronics Division

144

Α	luminum	
Compound	Al 2p	AI KLL
	Binding Energy (eV)	Kinetic Energy (eV)
Al	72.8	1393.3
AlAs	73.6	1391.2
Al ₂ O ₃ , gamma	73.7	1387.8
Al ₂ O ₃ , alpha	73.9	1388.2
Al ₂ O ₃ , gamma	74.0	1387.8
Al(OH)3, gibbsite	74.0	1387.4
Al ₂ O ₃ , sapphire	74.2	1387.8
AlOOH, boehmite	74.2	1387.6
Al(OH)3, bayerite	74.2	1387.7
Al ₂ O ₃ , gamma	74.3	1387.8
AIN	74.4	1389.0
Al ₂ SiO ₅ , sillimanite	74.6	1386.9
		*
	-	

	Silicon	
Compound	Si 2p Binding Energy (eV)	Si (KLL) Kinetic Energy (eV
Si	99.5	1616.6
MoSi ₂	99.6	1617.2
PdSi	99.8	1617.4
Mol Sieve A	101.4	1610.1
Hydroxysodalite	101.7	1610.7
Si ₃ N ₄	101.8	1612.6
Mol Sieve X	102.2	1609.4
Natrolite	102.2	1609.6
Mica, muscovite	102.4	1609.6
Wollastonii, Ca3Si3Og) 102.4	1610.0
p-Methylsil. (linear)	102.4	1609.4
LiAlSi2O6, spodumen	le 102.5	1609.6
NaAlSi ₃ O ₈ , albite	102.6	1609.2
AlSiO5, sillimanite	102.6	1609.5
p-Phenylsil. (resin)	102.7	1610.0
Mol Sieve Y	102.8	1608.7
Pyrophyllite	102.9	1609.2
p-Methylsil. (resin)	102.9	1608.8
Kaolinite	103.0	1609.0
Talc, Mg ₃ Si ₄ O ₁₀ (OH)	2 103.1	1608.9
SiO ₂ , alpha cristobal	103.3	1608.8
H Zeolon	103.3	1608.4
SiO ₂ , gel	103.4	1608.3
SiO ₂ ,Vycor	103.5	1608.5
SiO ₂	103.6	1608.8
SiO ₂ , quartz	103.7	1608.6

	Copper	
Compound	Cu 2p Binding Energy (eV)	Cu LMM Kinetic Energy (eV
Cu2Mo3O10	931.6	916.5
Cu ₂ Se	931.9	917.6
CuAgSe	931.9	917.7
CuSe	932.0	918.4
CuS	932.2	917.9
CuBr ₂	932.3	916.9
Cu ₂ S	932.5	917.4
CuCl	932.5	915.0
CuCl '	932.5	915.6
Cu ₂ O	932.5	916.2
Cu ₂ O	932.5	916.2
Cu ₂ O	932.5	916.6
Cu ₂ O	932.5	917.2
Cu	932.6	918.6
Cu	932.6	918.7
Cu ₆₄ Zn ₃₆	932.6	918.6
Cu	932.6	918.6
Cu	932.6	918.7
Cu	932.7	918.6
CuCN	933.1	914.5
CuC(CN)3	933.2	914.5
CuO	933.7	918.1
Cu ₃ Mo ₂ O ₉	934.1	916.6
CuMoO ₄	934.1	916.6
CuCr ₂ O ₄	934.6	918.0
CuSiO ₃	934.9	915.2
CuCO ₃	935.0	916.3
Cu(OH) ₂	935.1	916.2
CuCl ₂	935.2	915.3
Cu(NO ₃) ₂	935.5	915.3
CuSO ₄	935.5	915.6
CuF2	936.1	916.0
CuF2	936.8	914.4
CuF ₂	937.0	914.8

	Zinc	
Compound	Zn 2p3/2 Binding Energy (eV)	Zn LMM Kinetic Energy (eV)
Zn(acac)2	1021.4	987.7
Cu ₆₄ Zn ₃₆	1021.6	992.7
ZnO	1021.75	988.5
Zn	1021.8	992.1
Zn	1021.89	992.1
ZnCl ₂	1021.9	989.4
Zn4Si2O7(OH)2 ·	2H ₂ O 1021.96	987.3
ZnS	1022	989.7
ZnF ₂	1022.2	986.2
ZnO	1022.5	987.7
ZnF ₂	1022.8	986.7
ZnI ₂	1023	988.7
ZnBr ₂	1023.4	987.3

£

Arsenic			
As 3d Binding Energy (cV)	As LMM Kinetic Energy (eV)		13
40.8	1226.0		
40.8	1225.3		12
41.6	1224.8		
42.8	1221.1		
42.9	1222.3		
43.5	1222.9		1
43.5	1222.3		1.
44.1	1220.0		
44.2	1219.5	0	
44.3	1219.5	(eV	
44.9	1218.8	S	12
45.3	1218.1	ner	
45.5	1217.1	O E	
46.2	1217.5	neti	
48.0	1213.8	Ki	12
			12
			1:
	Arsenic As 3d Binding Energy (eV) 40.8 40.8 41.6 42.8 42.9 43.5 43.5 43.5 44.1 44.2 44.3 44.9 45.3 45.5 46.2 48.0	As 3d As LMM Binding Energy (eV) Kinetic Energy (eV) 40.8 1226.0 40.8 1225.3 41.6 1224.8 42.8 1221.1 42.9 1222.3 43.5 1222.3 43.5 1222.3 44.1 1220.0 44.2 1219.5 44.3 1219.5 44.9 1218.8 45.3 1218.1 45.5 1217.1 46.2 1217.5 48.0 1213.8	Arsenic As 3d As LMM Binding Energy (eV) Kinetic Energy (eV) 40.8 1225.3 41.6 1224.8 42.8 1221.1 42.9 1222.3 43.5 1222.9 43.5 1222.9 43.5 1222.3 44.1 1220.0 44.2 1219.5 44.3 1219.5 44.9 1218.8 45.3 1218.1 45.5 1217.1 46.2 1217.5 48.0 1213.8

	Selenium		
Compound	Se 3d Binding Energy (eV)	Se LMM Kinetic Energy (eV)	
Se	55.1	1306.7	
Se	55.5	1307.0	
Ph ₂ Se	55.8	1304.0	
Ph2Se2	55.8	1304.3	
Ph ₂ SeO	57.6	1301.9	
Cl ₂ SePh ₂	57.7	1302.9	
I2SePh2	58.1	1302.1	
SeO ₂	58.9	1301.4	5
Na2SeO3	59.1	1301.2	3
H ₂ SeO ₃	59.2	1300.8	100
H ₂ SeO ₄	61.2	1297.9	o Ene
		3. •	The state
		2	

.

	1 01	
ompound	Ag 3d Binding Energy (eV)	Ag MNN Kinetic Energy (eV
AgF ₂	367.3	349.6
AgO	367.4	355.5
AgF	367.7	349.3
CuAgSe	367.8	351.3
Ag ₂ Se	367.8	351.4
Ag ₂ O	367.8	356.6
Ag ₂ SO ₄	367.8	354.2
AgI	368.0	350.1
AgO	368.0	350.6
Ag ₂ S	368.1	351.2
Ag	368.2	358.2
Ag	368.2	357.9
Mg21Ag79	368.3	352.1
Ag ₂ SO ₄	368.3	354.7
Ag ₂ O	368.4	350.6
Mg30Ag50	368.7	351.9
Al40Ag60	368.8	351.7
Mg97Ag3	368.8	352.2
AgOOCCF3	368.8	355.1
Al95Ag5	369.0	351.5
191211-201		

Perkin-Elmer Corporation Physical Electronics Division

Auger Parameter + Photon Energy

	Indium	
Compound	In 3d5/2 Binding Energy (eV)	In MNN Kinetic Energy (eV
In95Sn5	443.6	410.5
In	443.8	410.4
InSb	444.1	401.6
In ₂ O ₃	444.3	406.4
In ₂ Te ₃	444.5	408.9
InP	444.6	408.0
InP	444.6	411.0
In ₂ Se ₃	444.8	408.3
In ₂ S ₃	444.8	407.3
In(OH)3	445.0	405.0
(NH ₄) ₃ InF ₆	445.6	404.1
Inl ₃	446.0	405.8
InBr ₃	446.0	404.8
InCl ₃	446.0	404.6
InF ₃	446.4	403.7
InBr ₃	446.6	404.8

Perkin-Elmer Corporation Physical Electronics Division

486

Binding Energy (eV)

485

484

Auger Parameter + Photon Energy

$\begin{array}{cccccccc} Na_2Te & 57''\\ Te & 57''\\ Ph_2Te_2 & 57''\\ I_2TeEt_2 & 57''\\ I_2TePh_2 & 57''\\ I_2TeMe_2 & 57''\\ I_2TeMe_2 & 57''\\ TeO_2 & 57''\\ I_3TePh & 57''\\ P-tolylTeOOH & 57''\\ Cl_2TePh_2 & 57''\\ Br_2TePh_2 & 57''\\ \end{array}$	2.2 485.5 3.0 492.2 3.9 488.5 5.3 487.6 5.4 487.8 5.6 486.6 5.7 487.1 5.8 488.2 6.1 486.6
Te 57. Ph2Te2 57. I2TeEt2 57. I2TePh2 57. I2TePh 57. I3TePh 57. p-tolylTeOOH 57. Br2TePh2 57.	43.0 492.2 3.0 492.2 3.9 488.5 5.3 487.6 5.4 487.8 5.6 486.6 5.7 487.1 5.8 488.2 6.1 486.6
Ph2Te2 57 I2TeEt2 57 I2TeEt2 57 I2TePh2 57 I2TePh2 57 I2TeMe2 57 I2TeMe2 57 I2TeMe2 57 I2TePh 57 I3TePh 57 p-tolylTeOOH 57 Cl2TePh2 57 Br2TePh2 57	3.9 488.5 5.3 487.6 5.4 487.8 5.6 486.6 5.7 487.1 5.8 488.2 6.1 486.6
I2TeEt2 57. I2TePh2 57. I2TeMe2 57. I2TeMe2 57. I2TeMe2 57. I2TeMe2 57. I2TePh 57. I3TePh 57. p-tolyITeOOH 57. Br2TePh2 57. Br2TePh2 57.	5.3 487.6 5.4 487.8 5.6 486.6 5.7 487.1 5.8 488.2 6.1 486.6
I2TePh2 57 I2TePh2 57 I2TeMe2 57 TeO2 57 I3TePh 57 p-tolylTeOOH 57 Cl2TePh2 57 Br2TePh2 57	5.4 487.8 5.6 486.6 5.7 487.1 5.8 488.2 6.1 486.6
I2TeMe2 57: I2TeO2 57: TeO2 57: I3TePh 57: p-tolylTeOOH 57: Cl2TePh2 57: Br2TePh2 57:	5.6 486.6 5.7 487.1 5.8 488.2 6.1 486.6
TeO2 57: I3TePh 57: p-tolylTeOOH 57: Cl2TePh2 57: Br2TePh2 57:	5.7 487.1 5.8 488.2 6.1 486.6
I3TePh 57: p-tolylTeOOH 57: Cl2TePh2 57: Br2TePh2 57:	5.8 488.2 6.1 486.6
p-tolylTeOOH 570 Cl ₂ TePh ₂ 570 Br ₂ TePh ₂ 570	6.1 486.6
Cl ₂ TePh ₂ 570 Br ₂ TePh ₂ 570	
Br ₂ TePh ₂ 57	6.2 486.3
TO	6.2 486.6
1eO3 5/1	6.6 485.5
Br ₃ TePh 570	6.6 486.8
Br ₃ TeBu 57	6.6 486.5
TeBr ₂ 57	6.7 487.3
TeCl ₄ 57	6.9 486.1
(NH ₄) ₂ TeCl ₆ 570	6.9 486.4
Te(OH) ₆ 57'	7.1 485.1

Appendix B. Chemical States Tables

This compilation of all the elements, listed alphabetically, provides specific binding energies of various compounds and pure elements, and a reference in abbreviated notation. When Auger lines are listed, they are in kinetic energy. For compounds with more than one chemical state, an asterisk denotes the atom whose binding energy is listed. The references are expanded in Appendix C. Any listing with a Φ refers to the work contained in this handbook.

This appendix, most of which was compiled by Dr. Charles Wagner for Perkin-Elmer, is part of the chemical state identification algorithm of the PHI software and is also the basis for the XPS database SRD-20 of the National Institute for Standards and Technology (NIST). Further references may also be found in the journal Surface Science Spectra published by the American Vacuum Society.

Ag 3d			Ag ₂ Se	351.4	RRD78
Ag	368.3	Φ	Ag ₂ S	351.2	RRD78
Ag	368.2	Asam76	AgI	350.1	GaWi77
Ag	368.2	BiSw80	AgF	349.3	GaWi77
Ag	368.1	BiSw80	AgF ₂	349.6	GaWi77
Ag	368.2	BiSw80	Ag ₂ O	356.6	Scho73
Ag	368.2	JHBK73	Ag ₂ O	350.6	RRD78, GaWi77
Ag	368.2	NvMa80	AgO	355.5	WRDM79
Ag	368.2	HGW75, Scho73, WRDM79,	AgO	350.6	GaWi77
1.6		GaWi77, SFS77, Wagn75	Ag ₂ SO ₄	354.2	Wagn75
Ag	368.2	RRD78, Scho72	Ag ₂ SO ₄	354.7	TMR80
AgosSns	368.0	HSBS81	AgOOCCF3	355.1	Wagn75
AlanAgen	368.8	WeAn80			
AlosAgs	369.0	WeAn80	Al 2p		
Mg21Ag20	368.3	WeAn80	AL	72.9	Φ
MganAgan	368.7	WeAn80	Al ₂ O ₃ , sapphire	74.4	Φ
MgazAga	368.8	WeAn80	Al	72.8	LMKJ75, Tayl82, WPHK82
AgyYb	368.8	WWC78	- x		WRDM79, WaTa80
CuAgSe	367.8	RRD78	AIB ₂	71.9	MECC73
Agse	367.8	RRD78	ALAS	73.6	Tavl82
AgaS	368.1	RRD78	AlGaAs	73.6	Tav182
AgI	368.0	GaWi77	Fe ₃ Al	73.4	ShTr75
AgF	367.7	GaWi77	LiAlHa	75.6	MSC73
AgFa	367.3	GaWi77	AIN	74.4	MSC73
Ag ₂ O	367.8	HGW75, GaWi77, Scho73	AbS	74.6	MSC73
Ago	368.4	RRD78	Alla	74.6	MSC73
AgO	367.4	HGW75, GaWi77, Scho73	AIBra	75.2	MSC73
AgO	368.0	WRDM79	- AICI3	74.7	MSC73
Ag ₂ CO ₃	367.5	HGW75	AlF ₃	76.3	MSC73
AgoSO4	367.8	TMR80	Al2(MoO4)3	74.2	PCLH76
Ag ₂ SO ₄	368.3	Wagn75	Al2(WO4)3	74.3 -	NgHe76
AgOOCCE	368.8	Wagn75	CoAl ₂ O ₄	73.6	PCLH76
Ag(OAc)	368.4	HHDD81	MgAl ₂ O ₄	74.7	HNUW78
Ag(3-Cl-pyridin)-NO3	368.6	SmWa77	NiAbO ₄	74.2	LFWS79, NgHe76
			Al ₂ O ₃	74.3	Nefe82, MSC73, NSLS77
Ag MNN			Al ₂ O ₃	74.7	KIHe83, NGDS75
Ag	357.9	WRDM79	Al ₂ O ₃ , sapphire	74.2	Tayl82, WPHK82
Ag	358.2	Wagn75	Al ₂ O ₃ , alpha	73.9	WPHK82
Ag	351.9	RRD 78, PWA 79	Al ₂ O ₃ , gamma	73.7	WPHK82
Ag	351.6	GaWi77	Al ₂ O ₃ , gamma	74.0	Barr83
Aσ	358.3	Scho73, FKWF77	Al ₂ O ₃ , gamma	74.3	NgHe76
ALOA	351.7	WeAn80	AlO ₂ H, boehmite	74.2	Tayl82, WPHK82
AlosAgs	351.5	WeAn80	Al(OH)3, bayerite	74.2	Tayl82, WPHK82
MgalAga	352.1	WeAn80	Al(OH) ₃ , gibbsite	74.0	WPHK82
MganAgan	351.9	WeAn80	Al ₂ SiO ₅ , kyanite	74.7	AnSw74
MgorAg1	352.2	WeAn80	Al ₂ SiO ₅ , mullite	74.8	AnSw74
			Al ₂ SiO ₅ , sillimanite	74.6	AnSw74, WPHK82
CuAgSe	351.3	RRD78	Albite, NaAlSi3Og	74.3	WPHK82

Appendix B. Chemical States Tables

Bentonite	75.0	Barr83	As.S.	43.1	BWW176
Kaolinite	74.6	Barr83 WPHK82	AssS	43.1	BWWI76
Mica muscovite	743	WPHK82	Ac-Sr	45.4	SMAV72
Natrolite	74.3	WPHK82	Asla	43.5	DWW176
Pyronhyllite	747	WPHK82	AcBra	45.3	DWW176
Spodumene	74.3	WPHK82	Aso	45.5	L DCC77 MININ79
H Zeolon	74.8	WPHK82	R3203	44.5	Taule2 WDDA70
Hydroxysocialite	75.0	WPHK82	Aso	16.2	1ay162, WKDM179
Mol Sieve A	73.6	WPHK82 Barr83	A8205	40.2	MINNIZ CMANZO
Al(acac)	72.9	MSC73	KH2ASO.	467	SMAV72
An(deac))	14.5	moers	NaH-AsO	40.7	WDDM70
ALVII			NaAsO-	43.3	WKDW19
AINL	1202.2	WOUND WET OO	KASO2	44.2	Tayloz, WKDM19
AI	1393.3	WPHK82, Wa1a80	Na-AcO	44.4	SMAN72
AlAs	1391.2	Tay182	Na As O	44.9	SMAV 72
AIN	1389.0	TaRa81	Na4AS2O7	45.4	SMAV 72
Al ₂ O ₃ , sapphire	1387.8	Tayl82, WPHK82	KASF6	48.0	SMAV72, WRDM79
Al ₂ O ₃ , alpha	1388.2	WPHK82	LIASP6	49.4	SMAV72
Al ₂ O ₃ , gamma	1387.8	WPHK82	PhaAs	42.8	HVV79, SMAV72
Alooh	1387.6	WPHK82, Tayl82	Ph ₃ AsS	44.1	BWW176, HVV79
Al(OH) ₃ , bayerite	1387.7	WPHK82, Tay182	Ph ₃ AsO	44.3	BWWI76, SMAV72, HVV79
Al(OH) ₃ , gibbsite	1387.4	WPHK82	Ph ₃ As(OH) ₂	44.5	SMAV72
Al ₂ SiO ₅ , sillimanite	1386.9	WPHK82	McAsI ₂	43.5	BWWI76
Albite, NaAlSi ₃ O ₈	1386.5	WPHK82	Ph ₄ AsI	44.6	HVV79
Kaolinite	1386.7	WPHK82	Ph ₄ AsBr	44.6	HVV79, SMAV72
Mica, muscovite	1387.1	WPHK82			
Natrolite	1386.5	WPHK82	As LMM		
Pyrophyllite	1386.8	WPHK82	As	1224.8	Wagn75, BWWI76
Spodumene	1387.1	WPHK82	NbAs	1226.0	BWWI76
H Zeolon	1385.5	WPHK82	GaAs	1225.3	Tayl82, WRDM79
Hydroxysodalite	1386.4	WPHK82	As ₂ Te ₃	1225.0	BWWI76
Mol Sieve	1386.9	WPHK82	As ₂ Se ₃	1223.3	BWWI76
			As ₂ S ₃	1222.1	BWWI76
Ar 2p			AsI ₃	1222.9	BWWI76
Ar in Si	241.9	Φ	AsBr ₃	1218.1	BWWI76
ArinAe	241.2	CiHa74	As ₂ O ₃	1218.8	Tav182 WRDM79 BWW176
ArinAg	241.0	KiWi75	As ₂ O ₅	1217.5	BWW176
Ar in Au	240.3	CiHo74	NaH ₂ AsO ₄	1217.1	WRDM79
Ar in Au	240.5	KIWi75	NaAsO ₂	1219.5	Tavis2 WRDM79
ArinCu	240.7	Cille74	K ₂ AsFe	1213.8	WRDM70
Ar in Dt	241.1	E10575	PhaAs	1221.1	RWWT76
Ar in graphita	240.4	KIWI75	PhaAsS	1220.0	BWW176
Ar in graphite	241.0	WPDM70	Ph ₂ AsO	1219.5	BWW176
Ai in graphite	241.5	WKDM79	MeAsIa	1222 3	BWWI76
Ac 3d				1 44244.5	
As Ju	41.6	•	Au 4f		
As	41.0	Ψ D01 DWW27(MINI 20	An	84.0	•
AS	41.0	Dens1, D w w1/0, MIINN/8,	An	84.1	Acom76
NIL As	10.0	SMAV72, UCOd81	Au	84.0	Asam70 D:C90
NOAS	40.8	BWW1/6	Δu	04.0	DISW60
AIAS	41.0	Tay182	Au	04.0	B15W80
AlGaAs	41.0	Tay182	Au	83.9	BISW80
GaAs	40.8	LPMK74	Au	54.1	PEJ 82
GaAs	40.9	GGVL79, WRDM79, Tayl82,	Auco	64.2	ALMP82
	10.4	MINN78, IMNN79	AuSa	84.5	FHPW/5
InAs	40.6	LPMK74	AuSii4	85.1	FHPW73
As ₂ Se ₃	42.9	BWW176, UeOd82	IDAU2	84.6	WWC 78
			CIAUPh3P	85.4	BMCK77, VVSW77

ClAu(Ph ₃ P) ₂	85.4	BMCK77		Ba 3d5/2		
				Ba	780.6	Φ
Cl ₃ AuPh ₃ P	87.3	BMCK77		Ba	779.3	VaVe80
(Ph ₃ P)AuNO ₃	85.4	BMCK77		BaS	779.8	SiWo80
ClAu(Ph ₃ As)	85.2	VVSW77		BaO	779.9	WRDM79
(-AuSPEt ₂ S-) ₂	84.8	VVSW77		BaO	779.6	SiWo80
(-AuCH ₂ PEt ₂ CH ₂ -) ₂	84.0	VVSW77		BaO	7791	VaVe80
				Ba(NO ₁) ₂	780.7	CI SW83
Au MNN				BaCO	779.9	CI SW83
Au	2015.8	PEJ82		BaSO4	780 8	Wagn77
Au	2101.6	WaTa80		BaSO4	780.4	CI SW83
Au	2015.7	WaTa80		BaSO	770.0	SiWell
				BaCrO	778.0	ACUT72
B 1s				BaMoO	770 1	NES62
В	189.4	Φ		BaRhaO	779.6	NES82
В	187.3	HH170		04441204	119.0	141302
B₄C	186.5	HH170		Ba MNN		
AlB ₂	188.5	MECC73		Ba	(02.0	14 14 00
CopB	189.1	MECC73		BaO	002.0 507.5	Va Ve80
СоВ	188 1	MECC73		BaO	397.5	WRDM79
FeaB	188.4	MECC73	.85	Baco	598.4	Va Ve80
FeB	187.9	MECC73		Ba304	596.1	Wagn77
HfB ₂	188.3	MECC73		De 1e		
MnB ₂	187.2	MECC73		Be Is	12272	
MosBe	1877	BrWh78		Be	111.8	Φ
MoBa	188 /	MECC72		Be	111.7	HJGN70, SMKM77, WRDM79
TiBa	187.5	MECC73		BeO	113.8	HJGN70, KOK83, NFS82
VB	189.3	MECC73		BeMoO ₄	113.7	NFS82
W _a B _a	187.0	MECC73		BeRh ₂ O ₄	113.8	NFS82
CrB-	107.5	MECC73		BeF ₂	115.3	NKBP73
CID ₂ BN	100.0	MECC75	1 1000000	BeF ₂	116.1	HJGN70
Na-BO.	190.5	HJGN/0, KOK8	5, WKDM/9	NaBeF ₃	115.3	NKBP73
BaOo	192.0	D-Wh79		Na ₂ BeF ₄	114.7	NKBP73
B ₂ O ₃	192.0	DI WII/0		1223 324		
NaBE.	193.5	NUD3/3		Bi 4f		
NE.BE.	194.9	FILJ /0, KNS/3		. Bi	157.0	Φ
NaBH.	193.2	KNS75		Bi	156.9	SFS77
H _a BO _a	107.2			Bi	157.0	LKMP73
Na.B.O 10U.O	193.0	HIJ70		Bi	157.0	WRDM79, MSV73
R. H.	192.0	HHJ70		Bi ₂ S ₃	158.9	MSV73
Mo ND U	107.0	HHJ70		BiI ₃	159.3	MSV73
McaNb3118	107.2	HIJ70		BiF ₃	160.8	MSV73
NUL DE	107.5	HEJ /0		Bi ₂ O ₃	158.8	NGDS75
C U.NDE	194.9	BCGH73		Bi ₂ O ₃	159.3	MSV73
E+NIL DE	194.5	BCGH75		Bi ₂ O ₃	159.8	DSBG82
Mo-NDE	194.0	BCGH/3		BiOCl	159.9	MSV73
NoBH(OMe)	193.0	HHJ70		NaBiO ₃	159.1	MSV73
DL DDE	192.1	HHJ70		Bi ₂ MoO ₆	158.3	MaWo75
Ph3PBP3	193.3	HHJ70		Bi2Ti2O7	159.7	MSV73
PharOBF3	193.8	HHJ70		(BiO) ₂ Cr ₂ O ₇	159.6	MSV73
PharOBCI3	192.6	HHJ70	37	Bi2(SO4)3 · H2O	161.2	MSV73
PII3PBCI3	192.7	HHJ70		a second classes for a confide 0		ana an an Andrea Taran Battana.
CH3CNBF3	195.5	BCGH73		Br 3d		
CIC6H4B(OH)2	191.7	HHJ70		KBr	68.8	Φ
FC6H4B(OH)2	191.7	HHJ70		CsBr	68.1	MVS73
$(Et_3P)_2PtB_{10}H_{12}$	188.9	Rigg72		CsBr	69.6	Shlo78
$(Ph_{3}P)_{2}PtB_{10}H_{12}$	188.5	Rigg72			02.0	ondro

Perkin-Elmer Corporation Physical Electronics Division

RbBr	68.4	MVS73		Cr(CO)6	287.9	BCGH72, BCHM72,
KBr	68.8	MVS73, WaTa80				KTWY76, PFD73
NaBr	68.8	MVS73, ShIq78		Co(CO) ₃ NO	288.2	BCGH72
LiBr	69.2	MVS73		Fe(CO)s	288.0	BCGH72
CdBr ₂	69.2	SATD73		Fe(CO) ₂ (NO) ₂	288.2	BCGH72
CuBr ₂	68.9	VWHS81		Mn ₂ (CO) ₁₀	287.5	VWVR77
HgBr ₂	69.0	SATD73		Ni(CO)	288.2	BCGH72
PbBr ₂	68.7	Nefe82		(Mn(CO) ₄ Br) ₂	287.6	VWVP77
ZnBr ₂	70.0	SATD73		BrMn(CO)	288.0	VWVP77
Co(NH ₁) ₆ SbBr ₆	68.9	Tric74		AgeO	288.0	UCW 75
Ni(NHa)(Bra	68.7	NZB 78		Baco.	200.4	CI CW02
Pt(NH ₂) ₄ Br ₂	68.4	SNMK78		CaCO ₃	209.4	CLSW85
KaPtBr	60.3	SNIMK78		CdCO3	289.0	CLSW85
KaPtBr	60.2	SNMK78		1:00	289.3	HGW 75
CessbaBra	70.8	Trio74		L12CO3	289.8	CSFG/9
Dh Sh Dr	70.6	THC /4		Na ₂ CO ₃	289.4	GHHL70, HHDD81
RU3SU2D19	70.1	IIIC/4		NaHCO ₃	290.0	GHHL70
Di A De	/0.1	OYK/4		SrCO ₃	289.5	CLSW83
Ph4ASBr	00.7	HVV/9		CS ₂	287.0	GHHL70
Ph4SDBr	68.0	HVV79		CO ₂	291.9	GHHL70
(Me ₄ N) ₂ ZnBr ₄	67.8	EMGK74		CCL	292.4	GHHL70
(Et ₄ N) ₂ MnBr ₄	67.9	EMGK74		COF ₂	293.9	GHHL70
(Et ₄ N) ₂ NiBr ₄	68.9	EMGK74		CF ₄	296.7	GHHL70
H ₃ POBBr ₃	69.3	HVV79		Cyclohexane	285.2	GHHL70
H ₃ PBBr ₃	69.6	HVV79		Benzene	284.7	GHHL70, LaFo76, CKAM72
Br2Pt(CH3CONH)4	68.7	NeSa78		C ₆ H ₅ C*H ₃	284.7	CKM71
			1	C6H5CH3 (C*CH3)	285.1	CKM71
Br LMM				C6H5CH3 (C*-H)	285.0	CKM71
LiBr	1389.2	Wagn78		Fe(CsHs)	284.5	BCDH73
NaBr	1388.3	Wagn78		Ctr(CeHe)	284.4	KTWY76
KBr	1388.0	WaTa80		CH-C*H-OH	286.3	CHHI 70
KBrOa	1384.4	Wagn78		CH_COOC*H_CH	286.0	CHUI 70
CleHarMerNBr	1390.1	Wagn78		CE	280.5	CKAM72
01011331110311031	1570.1	mugiro		Inositol	209.5	CHIH 20
C 1s				Hydroguinone	286.7	ONE24
Carlin	0045			(CellCOL)	280.4	OYK/4
Graphile	284.5	φ	(e)	(CHCOH)3	284.8	GHHL/0
Graphite	284.3	JHBK73		(CHC+OH)3	286.6	GHHL70
Cr ₃ C ₂	282.8	RHJF69		(CH ₃ C+H ₂) ₂ O	286.5	GHHL70, CITh78
FejC	283.9	ShTr75		HCHO	287.7	GHHL70
HfC	280.8	RHJF69		(CH ₃ C*HO) ₃	287.6	GHHL70
Mo ₂ C	282.7	RHJF69		CH ₃ C*OCH ₃	287.9	GHHL70
NbC	281.9	RHJF69		CF ₃ C*OCH ₃	288.5	GHHL70
Ni ₃ C	283.9	SiLe78		C*F3COCH3	292.6	GHHL70
TaC	281.9	RHJF69		(CO) ₆	288.3	GHHL70
TiC	281.6	RHJF69, 1K1M73		CH3C*OOH	289.3	GHHL70
VC	282.2	RHJF69		CH ₃ C*OONa	288.2	HHDD81
WC	282.8	RHJF69, CoRa76		CH ₃ C*OONa	288.8	GHHL70
ZrC	281.1	RHJF69		CH ₃ C*OOAg	288.3	HHDD81
KCN	286.1	Vann76		HOOCCOOH	289.9	GHHL70
NaCN	286.2	Vann76		(COONa)2	289.0	GHHL70
K ₃ Co(CN) ₆	285.9	Vann76		CF3C*OOEt	290.4	GHHL70
K ₃ Cr(CN) ₆	283.9	Vann76, ZeHa71		C*F3COOEt	292.9	GHHL70
K ₃ Fe(CN) ₆	283.9	Vann76, ZeHa71		Cl ₃ C*COONa	289.5	GHHL70
K4Fe(CN)6	283.5	Vann76		Cl ₃ CC*OONa	288.3	GHHL70
K3Mn(CN)k	284.0	Vann76		F3C*COONa	292.1	GHHI 70
Na ₄ Mn(CN) ₆	284.0	Vann76		F3CC*OONa	288.9	GHHI 70
K ₄ V(CN) ₄	285.5	Vann76		p-Benzoquinone	287.4	OYK74
	200.0	vann/O		E normodumono	201.4	UTR/4

Cr(acac) ₃	286.0	ZeHa71
CH3C*H2OCOCI	287.1	GHHL70
EtOC*OCI	290.8	GHHL70
(PhO)2CO	290.7	CITh78
HC*(OCH ₃) ₃	289.7	GHHL70
HCOONH4	288.4	GHHL70
OC*(OCH ₃) ₂	291.2	GHHL70
O(C*H-COOH)	2867	GHHL70
O(CH ₂ C*OOH) ₂	289 5	GHHL70
CH _C *H ₂ Cl	2861	GHHL70
CH ₂ Br ₂	287.1	GHHI 70
CH ₂ Ch	287.8	GHHL70
HCE	207.0	GHHL70
HCCI	289.6	CHHL70
CelleCl (C*Cl)	2871	CVM71
C.H.CI(C*H)	207.1	CKM71
C ₆ H ₂ R ₂	20.3.7	L NM/1
C-U-E(C*E)	203.1	Laro/o
$C_{6}\Pi_{5}\Gamma(C^{*}\Pi)$	207.0	CKM/I
C HC	285.0	CKM/I
C6HCls	286.1	CKAM75
C6HF3(C*H)	286.9	CKAM72
C6HF5(C*F)	289.2	CKAM72
C6P6	288.7	GHHL70
Cl2FCCFCl2	291.7	GHHL70
CIF2C*CFCl2	292.9	GHHL70
C*H ₃ CN	286.3	BCGH73
CH ₃ C*N	287.2	BCGH73
CH ₃ CONH ₂	288.4	SNMK78
EtNH ₂	285.6	BCGH73, GHHL70
EtNH ₂ BF ₃	286.8	BCGH73
PhNH ₂	284.6	LaFo76
C(NH ₂) ₃ Cl	289.4	LeRa77
$(CH_2)_6N_4$	286.9	GHHL70
C ₅ H ₅ N	285.5	BCGH73
PhCN	285.4	LaFo76
C*H ₃ CNBF ₃	287.3	BCGH73
CH ₃ C*NBF ₃	289.1	BCGH73
Triazole	286.3	GHHL70
NC*N=C(NH ₂) ₂	286.4	LeRa77
NCN=C*(NH ₂) ₂	288.2	LeRa77
H2NCH2C*OONa	287.9	GHHL70
H ₂ NCONH ₂	288.7	GHHL70, LeRa77
H ₂ NCSNH ₂	288.0	LeRa77, SrWa77
H2NCONHCONH2	289.3	YYS78
PhNO ₂	285.3	LaFo76
Ph ₃ P	284.9	LMF80
Ph ₃ PO	284.6	LMF80
Ph ₄ PBr	285.4	LMF80, LaFo76
Ph ₄ Sn	284.6	BALS76
p(CH2=CHCI)	286.3	PRCV77
p(CH2=CHOH)	286.3	PRCV77
p(HOCOCH=CH ₂)	289.0	HHDD81
p(NaOCOCMe=CH2)	288.1	HHDD81
p(C*H3OCOCH=CH2)	· 286.4	CITh78
p(CH3OC*OCH=CH2)	288.6	CITh78
p(MeOCOCMe=CH2)	289.0	HHDD81

	PVA (-CH+C*HOH-)n	2861	PRCV77
	Cellulose	286.2	CDW81
	PEO (-CH ₂ C*H ₂ O-)n	286.1	CDW81
	poly (-CH2CH2C=O-)n	287.4	CDW81
	C6H4(C*OOH)2	288.9	CDW81
	HOOC*(CH2)4C*OOH	288.9	CDW81
	Sodium Stearate	288.3	CDW81
	Mylar Polyester C*-H	284.85	JFM
	Mylar Polyester C*-O	286.3	CDW81
	Mylar Polyester C*O2	288.7	CDW81
	Polycarbonate-OC*O2-	290.4	CDW81
	Teflon (-CF2CF2-)n	292.2	CFK73
	(-C*FHCF ₂ -)n	289.3	CFK73
	(-CFHC*F2-)n	.291.6	CFK73
	(-CFHCFH-)n	288.4	CFK73
	$(-C^{*}H_{2}CF_{2})$	286.3	CFK73
	(-CH2C*F2-)n	290.8	CFK73
	(-C*H2CFH-)n	285.9	CFK73
	(-CH ₂ C*FH-)n	288.0	CFK73
	PVC (-C*H ₂ CHCl-)	284.9	PRCV77
	PVC (-CH ₂ C*HCl-)	286.5	PRCV77
Ca	2p		
	Ca	346.3	Φ
\mathbf{z}	CaCO ₃	346.6	Φ
	Ca	345.9	VaVe80
	Ca	346.8	SMKM77
	CaH ₂	346.7	FMUK77
	CaSe	345.9	FMUK77
	CaS	346.5	FMUK77
	CaCl ₂	348.3	Wagn77
	CaF ₂	347.8	Wagn77, NSLS77
	CaO	346.1	InYa81
	CaO	346.7	FMUK77
1.0)	CaO	347.3	VaVe80
	CaCO ₃	346.9	Wagn77, CLSW83, WRDM79
	Ca(NO ₃) ₂	348.7	CLSW83
	CaCrO ₄	346.3	ACHT73
	CaMoO ₄	347.2	NFS82
	CaRh ₂ O ₄	345.7	NFS82
	CaSO ₄	348.0	CLSW83
	CaWO ₄	346.5	Nefe82
	Ca ₃ Si ₃ O ₉	347.0	WPHK82
Ca	LMM		
	Ca	298.2	VaVe80
	CaO	292.5	VaVe80
	CaCO ₃	291.9	WRDM79, Wagn77
	CaCl ₂	291.9	Wagn77
	CaF ₂	289.1	Wagn77
Cd	3d5/2		
	Cd	405.1	Φ
	Cd	405.0	GaWi77, HSBS81,WRDM79, Wagn75
	Cd996Sn4	404.9	HSBS81

Perkin-Elmer Corporation Physical Electronics Division

Appendix B. Chemical States Tables

Hg _{0.8} Cd _{0.2} Te	404.6	SBB80	K2ReCl6	198.4	CoHe72
CdTe	404.9	SBB80, GaWi77	K2ReCl6	199.3	LeBr72
CdSe	405.3	GaWi77	K ₂ SnCl ₆	198.4	CoHe72
CdS	405.3	GaWi77	K ₂ WCl ₆	199.0	LeBr72
Cdb	405.4	GaWi77	KalrCl6	198.7	NSBN77
CdBr ₂	406.0	SATD73	K ₃ RhCl ₆	198.4	SNMK78
CdCl2	406.1	SATD73	K ₄ MmCl ₈	198.8	HUGH79
CdEa	405.9	GaWi77 SATD73 Wagn77	NapPdCL	100.3	SeTe76
CdO	405.2	GaWi77 NGDS75 NFS82 SBB80	Co(NHa)/ShCk	108.0	Trie74
CdOa	403.6	HGW75	Pt/NH-)-CL	108.9	CMUI 77 Nafe 79
Cd(OH)	405.0	WPDM79 HGW75	Pt(NH-)_CL	190.0	CMILL//, INCIC/0
C4CO.	405.0	HCW75	Dr(NILL) CL	197.0	SINME 78
CdDb-O.	404.7	NES82	DECNUL) CL	197.8	SINIME /8
Curcii204	404.7	NF362	Rn(INH3)6CI3	198.1	Neie/8
CLIMAN			CS3502C19	198.0	BCH/5, Inc/4
Ca MININ			CSSDCI6	199.2	Inc/4
Cd	383.8	WRDM79, Wagn75,	KIrClsNO	198.9	NSBN77
	2211 V	GaWi77	ICI	200.1	Sher76
CďTe	382.4	GaWi77	CsClO ₄	208.2	MVS73
CdSe	381.4	GaWi77	KCIO ₃	206.5	MVS73
CdS	381.1	GaWi77	KClO ₄	208.8	MVS73
CdI ₂	381.0	GaWi77	LiClO ₄	209.0	MVS73
CdF ₂	378.8	GaWi77	NaClO ₄	208.5	MVS73
CdO	382.2	GaWi77	Ni(NH ₃) ₆ (ClO ₄) ₂	208.2	NZB78
			NiClO ₄ . 6H ₂ O	208.6	NZB78
Ce 3d		÷ ,	RbClO ₄	208.4	MVS73
Ce	883.8	Φ	Me ₄ NCl	196.2	EMGK74
Ce	883.9	ScOs82	Et4NC1	196.4	EMGK74
CeAb	883.5	LFBC80	Ph4NCI	196.1	HVV79
CePda	884.3	LFBC80	NH4Cl	197.9	EMGK74 -
CeSe	884 3	LFBC80	Chlorobenzene	200.1	CKAM75
CeCussia	883.6	LFBC80	Pentachlorobenzene	200.0	CKAM75
CeOa	881.8	WPDM70	CIRh(Ph ₂ P) ₂	198.0	Nefe78 OUT79 MMRC72
CeOs	887 4	NGDS75 SaPago	(EtaP)pPtHCl	198.0	Rige72
Celle	886.0	SoOr82	(PhaP)2PtHCL trans	197.1	CBA73
CCII3	860.0	300302	(EtaP)pPtCL	199.2	LeBr72 Nefe78 Rigg72
(1) 2=			(EtaP) ₂ PtCl ₂	108 1	Pige72
Ci 2p	100.5		(PhaP)aNiCla	199.0	RNSA70 STHU76
KCI	198.5	Φ.	(PhaP)aNiCla	108.3	N7278
CsCl	196.3	M VS73	Ph-PRC1.	100.4	N2D78
KCI	198.2	MVS73, NSLS77, YYS78	Ph.POPCI.	199.4	HVV79
NaCl	198.4	MV\$73, NSL\$77, \$G\$070	(Mb. Clat.) CL/Et ND.	196.9	D-W-70
LiCl	198.5	MVS73, CSFG79	(IN06C1 12)C16(EL4IN)3 (NIL CL.)C1# (EL NI)	199.4	Bewa79
RbCl	197.9	MVS73	(1406C112)C1*6(E1414)3	197.5	Bewa/9
CuCl ₂	200.0	VWHS81	CuCi2	199.0	SAID/3
NiCl ₂	199.4	K1He83, TRLK73, YYS 78	CUCI2	199.2	Y YS/8
PdCl ₂	198.9	NKBP73	HgCh	198.7	SAID/3
RhCl ₃	199.3	OIIT79	InCl	198.4	FHT77
$RhCl_3 \cdot 12H_2O$	199.2	CMHL77	InCl ₃	199.0	FH177
SbC1s	199.7	BCH 75	TiCl4	198.2	MRV83
ZnCl ₂	198.5	K1He83	UCI3	198.1	TBVL82
K2IrCl6	198.6	NSBN77, LeBr72, CoHe72	UCI4	197.7	TBVL82
K2MoCl6	198.4	CoHe72	UCI5	197.7	TBVL82
K ₂ OsCl ₆	198.6	CoHe72, LeBr72	UOCI	198.5	TBVL82
K ₂ PdCl ₄	198.8	NKBP73	UOCl ₂	198.3	TBVL82
K ₂ PtCl ₄	198.8	CMHL77, SNMK78	ZnCl ₂	199.7	SATD73
K ₂ PtCl ₆	198.8	CoHe72, LeBr72, SNMK78	(NH ₄) ₂ PtCl ₄	198.2	KaEl79
			OPCl ₃	201.7	FIWe75

 Φ

KClO ₃	206.5	NZK77		Br4Co(Et4N)2	780.1	EMGK74
KClO ₄	208.7	NZK77		Cl ₄ Co(Et ₄ N) ₂	780.6	FMGK74
HCIPt(Ph ₃ P) ₂	197.9	AL77		Cl ₂ Co(thiourea)	780.9	NRMO73
HCIPt(Et ₃ P) ₂	198.0	AL77		orgoo(momen);	100.5	NDMO73
Cl ₂ Pt(Ph ₃ P) ₂	198.0	AL77	(°r 2n		
Ph ₄ PCuCl ₂	198.9	FSJL83		Cr.	57.4.4	
PhaPCuCh	199.0	FSIL 83		Cr C- O	574.4	Φ
CAHsCl	201.0	CKM71		Cr ₂ O ₃	576.9	Φ
CeHeCCh	201.0	CKM71		Cr	574.3	LANM81
C(NHabCl	108.0	LaDa77		Cr	574.3	WRDM79
D(CH-CHCI)	200.0	DDCU77 WDDM70		Cr ₂ N	576.1	RoRo76
p(ong-one)	200.0	FRC V/7, WRDM/9		CrN	575.8	STAB76
C . 1.				CrB ₂	574.3	MECC73
C0 2p		2		Cr ₂ S ₃	574.8	CSC72
Co	778.3	Φ		CrI ₃	576.7	CSC72
CoO	780.4	Φ		CrBr ₃	576.2	CSC72
Co	778.3	LANM81		CrCl ₃	577.4	CSC72
Co	778.1	WRDM79		Cr ₂ O ₃	576.8	BDFP81 CDFM82 CSC72
Co ₂ OSn ₈₀	777.9	ThSh78				WRDM79 NGDS75
Co ₂ B	778.4	MECC73		CrO ₂	5763	IIKK76
CoB	778.0	MECC73		CrOa	578 3	ACH772
CoS	781.9	Limo81		CrE	580.3	Cecto
CoF ₂	783.0	CSC72		CrOs	570.9	CDEM22
CoF2 · 4H2O	782.6	NBM073		Cr(OH).	577.0	CDFM82
CoF ₃	782.4	CSC72		CrOOH	577.5	CDFM82
CoO	780.2	WPDM70		CIUCH	577.0	IIKK76 .
CoO	780.4	Vim75 MCD075		Cr(CO)6	576.3	BCGH72, BCHM72
000	700.4	NIESO2 CDD26		Cr(CO)6	577.0	PFD73
Call	790.2	NCD875 OLUT		Cs2CrO4	579.8	AT76
C0304	700.2	NGDS/5, OKH1/6		Cs ₂ Cr ₂ O ₇	579.5	AT76
C0304	119.5	GPDG/9		CuCrO ₂	576.4	ACHT73
C02O3	779.9	McCo/5		CuCr ₂ O ₄	577.1	CDFM82
COUCH	780.0	McCo75		K ₂ Cr ₂ O ₇	579.9	NSSP80
Co(OH)2	781.0	McCo75		LaCrO ₃	575.8	HoTh80
CoAl ₂ O ₄	780.8	OkHi76		Li2CrO4	579.8	ACHT73
CoAl ₂ O ₄	781.9	PCLH76		LiCrO ₂	577.0	ACHT73
CoCr ₂ O ₄	780.2	OkHi76		Na ₂ CrO ₄	579.8	ACHT73
CoFe ₂ O ₄	779.7	OkHi76		Na ₂ CrO ₄	580.5	LaKe76
CoMn ₂ O ₄	780.0	OkHi76		Na ₂ Cr ₂ O ₇	579.4	ACHT73
CoMoO ₄	780.9	GPDG79		Na ₃ CrO ₄	578 5	LaKe76
CoMoO ₄	782.8	PCLH76		Na ₄ CrO ₄	577.0	Lake76
CoRh ₂ O ₄	781.2	NFS82		NaCrOn	577 1	Lakero ACUTZ2
CoSO ₄	784.0	Limo81		ZnCraO	577.2	DDEDel
ZnCo ₂ O ₄	780.4	OkHi76		BaCrO.	570.1	BDFF81
Cs2CoL	780.5	NBM073		CaCrO.	579.0	Allu/o
Cs2CoBr	780.8	NRM073		(NILL) CVE	578.9	ACH173
CsrCoCl	781.0	NBM073		(INT4)3CIT6	579.5	AlTu/6
KaCo(CaOa)a	780.9	CSC72		Cr(INH3)6Cl3	578.5	AlTu76
K ₂ Co(NO ₂)	781.8	NPM072		K3Cr(CN)6	576.3	Vann76, ZeHa71
Co(CO)-NO	701.0	INDIMO/3		K ₃ CrF ₆	583.0	AlTu76
K-Co(CN)	700.7	BCGH/2		Cr(acac) ₃	577.7	AlTu76
K3CO(CN)6	781.2	OKH1/0		Cr(acac) ₃	576.1	ZeHa71
Co(NUL) CI	782.1	Vann/6		Cl ₃ Cr(urea) ₆	579.9	AlTu76
Co(NH3)3Cl3	781.4	NBM073		$Cr(C_{s}H_{s})_{2}$	574.8	BCDH73, CDH 74, GSMJ74
Co(INH ₃) ₅ Cl ₃	781.9	YNAB77		$Cr(C_5H_5)_2$	576.3	CIAd71
Co(NH ₃) ₆ Cl ₃	781.1	CSC72		Cr(C5H5)(C7H7)	574.4	CDH74, GSMJ74
Co(NH ₃) ₆ Cl ₃	781.8	NBM073		Cr(C ₆ H ₆) ₂	574.1	CDH74
$Co(C_5H_5)_2$	779.1	BCDH73		Cr(C6H6)2	575.4	PFD73
$Co(C_5H_5)_2$	781.3	CIAd71		Cr(CO) ₅ PH ₃	575.3	BCGH72
				(3) (0) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	12. 12. 2012	and an and a second second

Perkin-Elmer Corporation Physical Electronics Division

1

Appendix B. Chemical States Tables

Cr(CO) ₅ NH ₃	575.5	BCGH72, BCHM72	CuBr ₂	932.3	VWHS81
Cr(CO) ₃ C ₆ H ₆	575.7	CDH74	CuCl .	932.5	GaWi77, Wagn75
Cr(CO) ₃ C ₆ H ₆	576.3	PFD73	CuCl ₂	934.4	GaWi77
Cr(CO) ₅ (Me ₃ P)	575.2	BCGH72, BCHM72	CuCl ₂	935.2	WRDM79
Cl ₃ Cr(C ₅ H ₅)	576.1	GSMJ74	CuCl ₂	934.8	VWHS81
ICr(C ₆ H ₆)	576.4	CDH74	CuCl ₂	935.6	YYS78
			CuF2	9361	GaWi77
Cr LMM			CuF2	937.0	WRDM79
Cr	527.2	WRDM79	CuF ₂	936.8	VWHS81
	0107110	and the second s	CupO	932.5	CDEM82 GaWi77 Wage75
Cs 3den			0.020	1 Stand	HMU778 MSSS81 Scho73b
Cs July2	726 4	A	CuO	0337	HMU278 CaW577
C	726.0	VDP77		133.1	WPDM70 MSSS1
Cel	720.0	KDK77 MV872	Cu(OH)	0351	MCCC01
CsI CsP=	725.9	MV573	Cu(NO ₂)	025.5	M33361
CSDF	724.0	MV5/3	CuCN	022.1	NZK//
CSCI	123.1	MVS/3	CHC/CND	933.1	wagn75
CSF	724.0	MVS/3	CuC(CiV)3	933.2	NZK//
CsN ₃	723.6	SGRS72	CuCO3	935.0	WRDM/9
Cs ₂ SO ₄	723.9	Wagn77	CuSO4	934.9	Limo81 .
C\$3PO4	723.9	MVS73	CuSO4	935.5	NZK77
Cs ₄ P ₂ O ₇	723.8	MVS73	CuSiO ₃	934.9	WRDM79
CsClO ₄	724.2	MVS73	Cu ₂ Mo ₃ O ₁₀	931.6	HMUZ78
Cs ₂ CrO ₄	724.5	ACHT73	Cu ₃ Mo ₂ O ₉	934.1	HMUZ78
C\$2Cr2O7	723.9	ACHT73	CuCr ₂ O ₄	934.6	CDFM82
CsOH	724.5	WRDM79	CuCrO ₂	932.3	ACHT73
		2	CuFe ₂ O ₄	933.8	LDDB80
Cs MNN			CuFeO ₂	932.6	LDDB80
Cs2SO4	568.4	Wagn77	CuMoO ₄	934.1	HMUZ78
CsOH	586.7	WRDM79	CuRh ₂ O ₄	934.4	NFS82
			Cu(OAc) ₂	931.8	BrFr74
Cu 2n			Cu(OAc) ₂	935.0	YYS79
Cu	032.7	Φ.	Cu(acac) ₂	934.5	BrFr74
CuO	933.6	Φ.	Cu(8-Hydrozyquinol.)	935.0	BrFr74
Cu	032.6	AT MD92	Cu Salicylaldoxime	934.0	-BuBu74
Cu	032.6	T A NMO1	Cu ₄ Cu(Et ₄ N) ₂	932.5	EMGK74
Cu	032.6	DiSwen	Cu2Cu(H2NCONHCONH2)20	935.8	YYS78
Cu	932.0	B15w60			
Cu	932.0	DI3W80	Cu LMM		
Cu	932.7	BISW60	Cu	918.6	BiSw80
Cu	932.7	PEJ82	Cu	918.7	BiSw80
Cu	932.0	Asam/o, Gawi//, KPML/3,	Cu	018.6	BiSw80
C. 7-	022.6	WRDM/9, Wagn/5	Cu	0187	DE 182
Cu ₆₄ Zn ₃₆	932.6	vanO//	Cu	0186	VDML72 WDDM70 Weee75
Cu ₉₅ Sn ₅	932.5	Hegd82	Cu	910.0	KPWIL75, WKDW179, Wagii75,
CuiP	932.2	NSDU75	Cut. 7n	0186	Asam70, Gaw177
CusP	932.2	NSDU75	Cubezaiab	0176	vanO//
Cu ₂ Se	931.9	RRD78	Cu2Se	917.0	RRD/8
Cuse	932.0	RRD78	Cube	918.4	RRD/8
CuAgSe	931.9	RRD78	CuAgoe	917.7	KKD/8
CulnSe ₂	931.9	KJID81	Cu ₂ S	917.4	Wagn/S
Cu ₂ S	932.5	Wagn75	Cub	917.9	RRD78
CuS	932.2	RRD78	CUBr ₂	916.9	VWHS81
CuS	933.2	Limo81	Cici	915.0	Wagn75
CuS	931.9	BSRR81	CuCl	915.6	GaWi77
CuS	935.0	NSSP80	CuCl ₂	915.3	WRDM79, VWHS81, GaWi77
CuBr	932.1	BrFr74	CuF ₂	916.0	GaWi77
			CuF ₂	914.8	WRDM79

CuF ₂	914.4	VWHS81	MoFa	685.8	Waan90	
Cu ₂ O	916.2	CDFM82, HMUZ78	MgFa	6857	NDV74	
Cu ₂ O	916.2	CDFM82, GaWi77, Wagn75,	SrE	685.0	WDDM70	
		HMUZ78, MSSS81, Scho73b	SrE	684.5	NDV74	
Cu ₂ O	916.6	MSSS81, Wagn75	AgF	682.7	CoW77	
Cu ₂ O	917.2	GaWi77	ReE	695.9	NDV74 NVDD70	
CuO	918.1	GaWi77 MSSS81 Scho73b	CdE	60.4.5	NDK/4, NKBP/5	
Cu(OH)	916.2	MSSS81	CdE	694.0	Gawii/, WKDM/9	
Cu(NO ₃)	915.3	NZK77	CdE	004.0	NBK/4, SAID/3	
CuCN	914.5	Wagn75	Curz	084.2	NSLS//	
CuC(CN) ₂	914.5	N7K77	Cur ₂	084.5	GaW1/7, WRDM79	
CuCO	0163	WPDM70	Cur ₂	685.9	VWHS81	
CuSO	0156	N7K77	Hgr2	686.0	SATD73	
Cusio	015.0	WDDM70	MINF ₂	684.8	WRDM79	
Cu-Ma-O-	0165	WKDM1/9	NIP ₂	685.0	GaWi77, WRDM79	
Cu2W103O10	910.5	HMUZ/8	$N_1F_2 - 4H_2O$	684.7	NSLS77	
Cu3W102O9	910.0	HMUZ/8	PbF ₂	683.6	WRDM79	
CuCr204	918.0	CDFM82	ZnF ₂	684.6	GaWi77, Wagn77	
CUM004	910.0	HMUZ/8	ZnF ₂	685.1	NBK74	
D ()			AIF ₃ · 3H ₂ O	686.3	NBK74, NKBP73	
Dy 4d			GaF ₃ · 3H ₂ O	685.2	NBK74, NKBP73	
Dy	152.4	Φ	GdF ₃	684.8	McTh76	
Dy ₂ O ₃	167.7	SaRa80	InF ₃	685.2	WRDM79	
			InF3 · 3H2O	685.3	NBK74, NKBP73	
Dy 3d5/2			LaF ₃	684.5	WRDM79	
Dy	1295.5	Φ	NdF3	684.8	WRDM79	
Dy ₂ O ₃	1298.9	SaRa80	PrF3	684.6	WRDM79	
			SmF ₃	684.6	WRDM79	
Er 4d			YF ₃	685.3	WRDM79	
Er	167.3	Φ.	UF ₁	685.3	TRVI 82	
Er	169.4	WPDM70	UF	684.8	TRVI 82 DMDC77	
EraOa	168.7	WPDM70	UFs	684.8	TBVI 82	
Life?	100.7	WRDM19	ThE	684.9	WRDM70	
Fu 3den			· HfF4	685.4	WRDM70	
En En	11256		ZrFa	6851	NK BP73	
150	1123.0		NaBeF	685.7	NKBD73	
E. 44			Na ₂ BeFa	685.2	NVDD72	
Eu 4u	100.0		NaBE	687.0	WDDM70	
Eu	128.2	NNBF68	NE BE	694.2	DNC72	
Eu_2O_3	135.9	NNBF68	NaAIE	685.5	WDDM70	
			NaSiE	686.0	WKDW19	
F 1s			NaSiF	686.4	Wagn77	
LiF	684.9	Φ	KaSiE	686.6	INSLS//	
CsF	685.9	WRDM79	K_TIE	685.0	INDEX/4	
KF	683.9	NBK74, MVS73	K2TIF	684.0	WKDM/9	
KF	684.4	PMDS77	No.TE	695.2	NBK/4	
LiF	685.1	WRDM79	V EaE	085.5	Wagn//	
LiF	685.0	MVS73, NBK74	K3FCF6	684.0	WRDM79	
NaF	684.5	WRDM79	K2NIF6	687.6	TRLK73	
NaF	684.5	NBK74, NSLS77	K2GeF6	685.2	NBK74	
NaF	683.7	MVS73	Na2Ger6	685.9	WRDM79	
RbF	683.6	MVS73	K2ZrF6	684.6	NBK74, NKBP73	
RbF	682.9	NBK74	Na ₂ ZrF ₆	685.0	WRDM79	
BaF2	683.7	WRDM79	KZn ² 5 · H ₂ O	684.8	NKBP73	
BaF ₂	684.3	NBK74	K ₃ ZrF ₇	684.3	NKBP73	
CaF ₂	684.8	WRDM79	NaSnF ₃	685.3	WRDM79	
CaF ₂	684.8	NBK74, NSLS77	K ₂ SnF ₆ · H ₂ O	685.1	NBK74	
		a new of a new of f	CsSbF ₄	683.6	BCH75	

Perkin-Elmer Corporation Physical Electronics Division

K ₂ SbF ₅	683.9	Tric74
KSbF ₆	686.6	Wagn77
KSb ₂ F ₇	684.3	Tric74
Na ₂ SbF ₅	683.4	Tric74
NaSbF ₆	685.1	BCH75
K3RhF6	685.7	Nefe78
K2NbF7	685.4	WRDM79
K2NbF2	685.2	NBK74
K2TaF7	685.2	WRDM79
KoTaF7	685.1	NBK74
NaTaF ₆	685.2	NKBP73
Na ₂ TaF ₂	685.6	NKRP73
Na ₂ TaF ₂	685.5	NKBP73
KallE	684.7	DMDS77
FuOF	685 3	DCDU80
LaOF	685.2	DCDU00
NAOE	695 1	RGBH80
DEOE	695.0	KUBH80
NOF	083.0	RGBH80
TOF Co MaO E	085.5	RGBH80
CS2WOO2F4	684.7	NKBP/3
CS2WO2F4	684.7	NKBP73
UO ₂ F ₂	685.6	TBVL82
$p-(CF_2=CF_2)$	689.0	Wagn77
NIOOCCF3	688.4	WRDM79
CH ₃ CNBF ₃	687.0	BCGH73
NH ₃ BF ₃	686.6	BCGH73
C ₅ H ₅ NBF ₃	685.6	BCGH73
EtNH ₂ BF ₃	686.6	BCGH73
Et ₄ NSbF ₆	684.7	• BCH 75
Ph ₃ PBF ₃	685.7	HVV79
Ph ₃ POBF ₃	685.8	HVV79
FKLL		
CsF	653.8	WPDM70
LiF	654.7	WDDM79
NaF	655.0	Weep 77
BaE	656.2	Wagn //
CaE	655 4	WRDW79
MaE	654.4	WKDM/9
wgr2	034.4	Wagn //
SIF2	030.3	WRDM/9
Agr	659.3	GaW1//
Cur ₂	656.0	GaWi77, WRDM79
CuF ₂	657.0	GaWi77
CuF ₂	656.2	WRDM79
CuF ₂	656.2	WRDM79
NIF ₂	655.5	GaWi77, WRDM79
PbF ₂	658.5	WRDM79
ZnF ₂	655.6	GaWi77, WRDM79
InF ₃	656.4	WRDM79
LaF ₃	658.0	WRDM79
NdF ₃	657.0	WRDM79
PrF ₃	657.2	WRDM79
SinF ₃	657.0	WRDM79
YF ₃	655.8	WRDM79
ThF ₄	657.0	WRDM79
HfF ₄	655.3	WRDM79

NaBF ₄	652.8	WRDM79
Na ₃ AlF ₆	654.1	WRDM79
Na ₂ SiF ₆	653.0	Wagn77
K ₂ TiF ₆	655.7	WRDM70
NazTiFe	655.1	Wagn77
K3FeF6	656.0	W/PDM70
NaGeE	654.0	WRDW79
Na ₂ ZrE	655 1	WRDM79
NaSoFa	655.2	WRDW79
KShE :	656.6	WKDM/9
KoNbE	655.0	wagn//
KaTaE	655.0	WKDM/9
$n_2(CE - CE)$	655.0	WRDM/9
$P(Cr_2=Cr_2)$	652.4	Wagn //
NIOUCCF3	652.9	WRDM79
Fe 2p		
Fe	707.0	Φ
Fe ₂ O ₃	710.9	Φ
Fe	706.7	I ANIMO I
Fe	706.8	Acom76
Fe	707.0	WDDM70 Mc7.77
FeaAl	707.6	WKDW1/9, WICZE//
FesSi	707.0	Shir/S
FeaB	707.5	Shir/S
FeD	706.9	MECC73
Feb Feb C	707.1	MECC73
FC3C	/08.1	ShTr75
FCS Fac	/10.3	CSC72
FeS (malarity)	712.2	Bind73, Limo81
reS ₂ (markasite, pyr)	706.7	Bind73
KreS ₂	708.7	Bind73
FeBr ₂	710.3	CSC72
FeBr ₃	710.1	CSC72
FeCl ₂	710.6	CSC72
FeCl ₃	711.3	CSC72
FeF ₂	711.3	CSC72
FeF ₃	714.2	CSC72
FeO	709.4	McZe77
Fe ₃ O ₄	708.2	McZe77
Fe ₃ O ₄	710.4	OkHi76
Fe ₂ O ₃	710.8	WRDM79, NGDS75
Fe ₂ O ₃ , alpha	710.9	McZe77
Fe ₂ O ₃ , gamma	710.9	McZe77
FeOOH, alpha	711.8	McZe77
FeOOH, gamma	711.3	KoNa80
CoFe ₂ O ₄	710.5	McZe77
Fe(C2O4)3 · 6H2O	713.6	Kilk73
FeSO ₄	712.1	Limo81
K ₃ FeF ₆	714.4	CSC72
NiFe ₂ O ₄	710.5	Mc7e77
K3Fe(CN)6	709.6	Vann76
K4Fe(CN)6	707.1	Vann76
K4Fe(CN)e	708 5	VNIN A 77
Na ₂ Fe(CN) ₂ (NO)	700.5	VNNA77
Na ₂ Fe(CN) ₂ (N ₂ O)	707.4	I INNA//
Na ₄ Fe(CN) ₆ (NO ₅)	706.9	VNNA77
Na ₂ Fe(CN) ₂ NH ₂	700.0	I ININA //
11031 0 (011)311113	101.0	I INNA //

2000

				No. of Concession, Name	
NasFe(CN)sNyH4	707.7	YNNA77	CLO.	142.0	0.0.00
Fe(CO)s	709.6	BCGH72	00203	143.8	SaRa80
Fe(CO) ₂ (NO) ₂	709.5	BCGH72	C121		
KFe4(NO) ₂ S ₃ ·2H ₂ 0	708.9	Nefe78	Galaa		
Fe(SMe)(CO)	708.6	BBER77	Gd	1187.0	Φ
Fe(CeHe)	707.7	FWIM70 BCDH73	· Gd ₂ O ₃	1189.0	SaRa80
10(03113)2	101.1	CDH74 Nefe78			
InFe(CeHa)a	709.9	CDH74, Nele78	Ge 2p3/2		
Fe(C.H.COOH)	708.4	EWIIM70	Ge	1217.2	McWe76
Fe(nhthalocyanine)	700.4	MSV70	Ge	1217.4	TLR78, MoVa73, Wagn75
r (philialocyantic)	703.1	WI3 V /9	GeS ₂	1219.8	MoVa73
FolMM			GeS ₂	1219.8	MoVa73
FC LIMINI	700 4	WID DA sea	GeN ₄	1218.8	TLR78
re	702.4	WRDM79	Gel ₂	1218.2	MoVa73
0.0			GeF ₂	1220.7	MoVa73
Ga 2p _{3/2}			GeO ₂	1220.4	MoVa73, Wagn75
Ga	1116.7	Φ	Na2GeO3	1218.9	MoVa73
Ga	1116.5	Scho73a	Na2GeF6	1221.3	Wagn75
GaP	1116.8	NSDU75	K2GeF6	1220.7	MoVa73
Ga ₂ O ₃	1116.9	BDFP81	Ph4Ge	1218.9	MoVa73
Ga ₂ O ₃	1117.8	Scho73a			
			Ge LMM		
Ga LMM			Ge	1146.2	MoWe76
Ga	1068.2	WRDM79, MINN78, Scho73a	Ge	1145.4	SEC77
GaAs	1066.3	MINN78	Ge	1145.1	SFS//
GaAs	1067.1	MINN78	GeTe	114.0.1	wagn/5, WRDM/9
GaP	1065.6	MINN78 MIN81	GeSe	1144.0	55577
GaP	1066.8	MIN81	Ges	1143.0	SFS//
GaN	1064.5	HeMa80	GeOr	1143.7	SFS//
GasSes	1065.2	ITT82	No.CoF	1157.7	Wagn/5
GasSei	1065.6	ITT82	1442061.6	1155./	Wagn/5
GarOa	1061.6	MINN78	0.23		
Ga2On	1062.4	ITT82	Gesa		
GasOs	1062.9	Scho72a	Ge	29.4	Φ
Gulo)	1004.7	0010724	Ge	29.3	McWe76
Co 3d			Ge	29.0	SFS77
Ga	196	MINING I DURZO	. Ge	29.1	HKMP74, UeOd82, WRDM79
Ga	18.0	MINN /8, LBHK /3,	GeAs ₂	29.7	HKMP74
Coth	20.2	Scho/3a, WKDM/9	GeTe ₃ As ₂	29.9	HKMP74
Cabo	20.2	LBHK/3	GeS ₂ TeAs ₂	30.2	HKMP74
GaAs	18.8	LPMK /4	GeS ₃ As	30.4	HKMP74
GaAs	19.2	IMNN79, MINN78, Tayl82,	GeTe ₂	30.1	HKMP74
GaP	18.8	MIN81	GeTe	30.0	SFS77
Gap	19.3	NIMN78, IMNN79	GeTe	29.7	HKMP74
GaP	19.9	LBHK73, MIN81	GeSe ₂	31.0	UeOd82
GaP	18.7	LPMK74	GeSe	30.9	SFS77
GaN	19.5	HeMa80	GeS ₂	30.4	HKMP74
AlGaAs	19.0	Tay182	GeS	30.5	SFS77
Ga ₂ Se ₃	19.7	IT182	GeS	29.5	HKMP74
Ga ₂ Se ₃	19.9	IT182	GeO ₂	32.5	HKMP74
Ga ₂ O ₃	19.6	GGVL79	Ph ₄ Ge	31.2	HWVV74
Ga ₂ O ₃	20.2	LBHK73, Scho73a	Ph ₃ GeI	31.8	HWVV74
Ga ₂ O ₃	20.5	ITI82	Ph ₃ GeBr	31.8	HWVV74
Ga ₂ O ₃	21.0	MINN78	Ph ₃ GeCl	31.8	HWVV74
Gd 4d			Hf 4f		
Gd	140.4	Φ	Hf	14.3	Φ

Hf

Φ

222

Appendix B. Chemical States Tables

				1		
Hf	14.4	WRDM79	I2Ni(Ph3P)2		619.3	NZB78
HfO ₂	16.7	SaRa80	I2Pt(Et3P)2		619.2	Rigg72
			I4In(Pr4N)		619.6	FHT77
Hf 4d			bPt(MeaP)2 cis		621.1	CAB71
HfO	213.2	SaRa80 NGDS75	hPt(MeaP)a tran		621.9	CAB71
moz	210.0	541400,1100075	L(MocI*e)		620.6	BeWa70
Un AP			I* (Mode)		610.3	BeWa70
	101.0	4	1 4(110018)		019.5	DCWa/9
HgS (cinnabar)	101.0		IMNN			
Hg	99.8	BrMc/2, SAID/3,	1 IVININ			
	100000	SMBM76, WRDM79	Lil	722	517.0	WRDM79
Hga.sCd0.2Te	100.2	SBB80	Agl		506.8	GaWi77
HgS	100.8	NSSP80	CdI		507.0	GaWi77
HgI ₂	100.7	SATD73	CuI		507.1	GaWi77
HgBr ₂	101.0	SATD73	Nil ₂		507.3	GaWi77
HgCl ₂	101.4	SATD73	Znl ₂		506.0	GaWi77
HgF ₂	101.2	SATD73				
HgO	100.8	NSSP80	In 3d5/2			
Et2NC6H4HgOAc	101.3	NSSP80	In		443.9	Φ
Cl-Hg(H-NCONHCONH2)	101.3	YYS78	In		443.8	Bert 81 Head 82 WRDM79
Hg(thiodibenzovlme)>	101.3	TBHH77			11010	PVVA70 I AK77
(Ph/P))Hg(SCN)	101.4	Fol a82	InocSne		443.6	Heads?
(c inter years) (o o t i)d		1 OLATON	InSh		444.1	IMNIN70
Ho 4d			InD		444.1	Date 1 CED 690
Ho 4u	150.6	•	In To-		444.0	WDDM20
но	159.0	Φ	III2103		444.5	WKDM79
		1 a.	In25e3		444.8	WRDM79
1 305/2	7.80.407.81		III ₂ S ₃		444.8	Wagn/7, MSC 73
KI	619.3	Φ	Ini ₃		446.0	Wagn77, MSC 73
I ₂	619.9	Sher76	Inl		443.9	FH177
Csl	618.2	MVS73	InBr ₃		446.0	Wagn77
RbI	618.2	MVS73	InBr ₃		446.6	MSC73
KI	618.8	MVS73	InBr		445.1	FHT77
NaI	618.6	MVS73, Sher76	InCl ₃		446.0	Wagn77
Lil	619.7	WRDM79	InCl ₃		446.9	MSC73
LiI	618.9	MVS73	InCl		444.9	MSC73
AgI	619.4	GaWi77 .	InF ₃		446.4	Wagn75, MSC73
CdI	619.2	GaWi77	In ₂ O ₃		444.3	Wagn77, NGDS75, Bert81
CdI	619.4	SATD73	In_2O_3		444.6	CFRS80
CuI	619.0	GaWi77	In_2O_3		444.9	LAK77, MSC73
Heb	619.4	SATD73	In(OH)3		445.0	WRDM79
InI	619.0	FHT77	(NH ₄) ₃ InF ₆		445.6	Wagn77
Inh	619.1	FHT77	CuInSe ₂		444.7	KJID81
Nila	619.0	GaWi77	In(acac) ₃		445.4	MSC73
Nila - 6H-O	619.7	NZB78	BraInEtaN		445.7	FHT77
ZnL	610.8	GaW577	ChInEtaN		445.2	FHT77
Zal	6107	SATD72	BranPraN		445.9	FHT77
NalO	622.5	SAID/S	LInPr.N		445.A	EUT77
NalO3	023.3	Sher/o	CLInPr.N		445.4	FH177
NaIO4	624.0	Sher /o	Ciquita (qi V		443.0	FH177
HIO ₃	623.1	Sher/6	L. MAIN	193		
H ₅ IO ₆	623.0	Sher76	In MINN			
1205	623.3	Sner/6	in L		410.4	WRDM79
ICI	621.5	Sher76	Ing5Sn5		410.5	PV VA79, KISC80, LAK77
·ICl3	622.5	Sher76	InSb		401.6	IMNN79
CS ₃ Sb ₂ I ₉	618.5	BCH75	InP		408.0	Bert81
Rb ₃ Sb ₂ I ₉	620.8	Tric74	InP		411.0	KISC80
Na(NilO ₆) - H ₂ 0	624.4	NZB78	In ₂ Te ₃		408.9	WRDM79

In-Sea	408.3	WRDM79	KaPICL	202.8	0-11-22 1-12 20
In-Si	407 3	Wagn77	K-DaCl	292.0	CoHe/2, LeBr/2
Inla	405.8	Wagn77	K D-CI	292.8	CoHe/2
InBr	404.8	Wagnill Wagn77	K2KCU6	293.1	LeBr72
InDi3	404.0	Wagn//	K ₂ SnCl ₆	292.8	CoHe72
InCi	404.0	wagn//	K ₂ WCl ₆	293.3	LeBr72
InF3	405.1	wagn/5	K3IrCl6	293.0	NSBN77
In ₂ O ₃	406.4	Wagn77	K ₄ Mo ₂ Cl ₈	293,2	HUGH79
In(OH)3	405.0	WRDM79	KSbFF ₆	-293.7	Wagn77
$(NH_4)_3InF_6$	404.1	Wagn77	KZrFF5 · H2O	292.7	NKBP73
A			K ₂ NiF ₆	294.2	TRLK73
Ir 4f			K ₂ UF ₆	293.1	PMDS77
Ir	60.9	Φ	K ₂ ZrF ₆	292.6	NKBP73
Ir	60.8	WRDM79, BHHK70, EPC75	K ₃ ZrF ₇	292.8	NKBP73
IrCl ₃	62.7	Folk73	K ₃ Co(CN) ₆	293.7	Vann76
K ₂ IrBr ₆	62.6	Nefe78K3IrBr661.8Nefe78	K ₃ Cr(CN) ₆	292.2	ZeHa71
K2lrCl6	63.0	CoHe72, LeBr72	K3Fe(CN)6	291.9	Vann76
K ₂ IrCl ₆	63.6	KSPB76, NSBN77	K ₃ Mn(CN) ₆	291.9	Vann76
K3IrCl6	62.5	NSBN77	K ₄ Fe(CN) ₆	201.0	Vann76
(NHa)2IrCl6	63.7	EPC75	K ₄ V(CN)	203.7	Vann76
(NH4)alrCls	63.0	EPC75	KIrCleNO	203.1	NSDN77
Ir(CO)-CI	63.4	KSPB76	K-P((CN), 3H-O	293.1	INSBIN//
KIrCLNO	65.0	NSPN77	K-Pr(CN) CL 211 0	293.3	CaLe73
KIrd(CO) Cl	62.7	VSDD76	K2ri(CN)4Ci2 · 5H2O	292.9	CaLe/3
K-I-(CO) Cl-	62.0	KSPB/0 VSPD26	$K_3CO(5CH_2CHINH_2COO)_3$	292.8	SSEW79
K2II2(CO)4CI5	63.0	KSPB/0	V 1100		
ICIA(EICF)2	03.0	Lebr/2	K LMM		
IFCIN2(Ph3P)2	00.7	Folk /3	KBr	250.7	WRDM79
$IrI_3(H_2NCH_2CH_2NH_2)_3$	03.1	NeBa72	KF	250.1	Wagn77
IrCl3(H2NCH2CH2NH2)3	63.2	NeBa72	KSbF ₆	249.3	Wagn77
IrCl6(H2NCH2CH2NH2)3	63.2	Nete/8	·		
V.A.			Kr 3d		
к 2р	10000		Kr in graphite	87.0	Φ
K	294.4	Φ			
KCl	292.9	Φ	La 3d		
K	294.6	SMKM77, PeKa77	La	835.8	Φ
KI	292.8	MVS73	La	835.9	ScSc82
KBr	293.0	MVS73, WRDM79	LaH ₂	838.8	ScSc82
KCl	292.8	MVS73, NSLS77	La2O3	835 1	WRDM70
KF	292.5	Wagn75	La2O3	833 7	SaRa80
KF	292.8	PMDS77	24203	055.1	Sakaoo
KF	293.1	MVS73	Lo 4d		
KCN	294.7	Vann76	La	102.0	NUCCO PERMIS
KN3	292.5	SGRS72	La	103.9	NIS72, KEML74
KNO3	292.9	NSLS77		101.3	SaRa80, NGDS75, HoTh80
KClO ₃	293.2	MVS73	LaCrO ₃	101.7	HoTh80
KClO ₄	293.4	MVS73			
KaPO4	203.5	MVS73	Li 1s	×	
KAPO	292.2	MVS73	LiF	55.6	Φ
KaCrO	202.6	ACUT72	Lî	54.7	KLMP73, CSFG79
K-Cr-O-	202.0	ACH173	LiN ₃	55.2	SGRS72
KaCraO	202.1	NISCON NESCON	LiBr	56.8	MVS73
K-MaO	272.0	NS3F80	LiCl	56.0	CSFG79, MVS73
K2MOOI	292.0	NIE 02	LiF	55.7	MVS73, WRDM79
KAL(AIC: O MOTH	292.3	INF362	Li ₂ O	55.6	CSFG79
KAI2(AISI3UI0)2(UII)2	293.0	WPHK82	LiOH	54.9	CSFG79
K2IICI6	292.8	NSBN//, LeBr72, CoHe72	Li ₂ CO ₃	55.2	CSFG79
K2MOCI6	292.7	CoHe72	Li ₃ PO ₄	55.4	MVS73
K2OSCI6	293.0	CoHe72, LeBr72		2.2.2.	1111010

2.2.5

Appendix B. Chemical States Tables

Li ₄ P ₂ O ₇	55.6	MVS73	MnF ₃	642.6	CSC72
LiClO ₄	57.2	MVS73	MnO	640.7	OHI75
Li2CrO4	57.1	ACHT73	MnO	640.5	OkHi76
LiCrO ₂	55.6	ACHT73	MnO	641.4	Acki76 CSC72
LiNbO	54.8	StHo79	Mn ₂ O ₃ , alpha	641.2	OHI75
			Mn ₂ O ₃	641.6	CSC72
Lu 4f			Mn ₂ O ₂ alpha	641.7	OkHi76
In	73	Φ	Mn ₂ O ₂ gamma	641.5	OkHi76
2.0	1.5	*	Mn ₂ O ₄	641.4	OHI75
In 4d			MnOp	642.4	WPDM70
Lu 4u	106.2	VENI 24 I DWETS	MnO ₂ heta	641.1	04175
Lu	190.2	NEWIL 74, LFWF73	MnOa	642.3	Acki76 CSC22 NCDS75
Lu ₂ O ₃	190.0	Sakașu, NGDS75	MnOOH	6417	AUKI70, C3C72, NOD373
M- 1			CoMpo	641.5	OkU:76
Mg 2p	10.0		CuMn ₂ O ₄	641.0	OkHi76
Mg	49.8	φ	MnCn-O	640.6	OkH176
Mg	49.6	HAS75, LMKJ75, HFV 77,	MrsO.	644.0	Ukrino 1
	10.0	Fugg77, WRDM79	KMnO.	647.0	Limosi Limpa79
Mg ₂ Cu	49.8	FWFA75	Mpa(CO)-	641.6	UMKC/8
Mg ₃ Bi ₂	50.6	FWFA75	$\operatorname{BrMp}(CO)_{10}$	641.0	VW VB77
MgF ₂	51.0	Wagn80	(P=M=(CO))	041.9	VWVB//
MgO	50.8	InYa81	$(\text{Diwin}(CO)_{4})_{2}$	041.7	VWVB//
Mg(OH) ₂	49.5	HNUW78a	BrMn(CO) ₄ (Ph ₃ P)	041.5	VW VB//
MgAl ₂ O ₄	50.4	HNUW78b	$M_{12}(CO)/(P(OWe)_3)_2$	641.0	VW VB//
Talc, Mg ₃ Si ₄ O ₁ O(OH) ₂	50.5	WPHK82	WIn2(CO)8(Pn3P)2	640.7	VWVB//
		2. 4	K3Mn(CN)6	639.7	Vann76
Mg 1s			Na4MIn(CN)6	638.3	Vann76
Mg	1303.1	 HAS75, LMKJ75, Fugg77 	$Mn(C_{SH_{S}})_{2}$	638.5	BCDH73, CDH74
Mg ₂ Cu	1303.0	FWFA75	$Min(CO)_3(C_5H_5)$	640.6	CDH74
Mg ₃ Bi ₂	1304.0	FWFA75	MIN(CO) ₃ (C ₅ H ₅)	641.8	CIAd71
MgF ₂	1305.0	Wagn80	N. 1307		
Mg(OH) ₂	1302.7	HNUW78a	Min LMM		
MgAl ₂ O ₄	1304.0	HNUW78b	Mn	617.6	Vayr81
Mg KLL			Mo 3d		÷
Me	1185.5	LMK175 SRHH78 WRDM79	Mo	228.0	Φ
	110010	Fnoo77 HFV 77	Mo	227.9	NyMa80
Mg2Cu	1185.7	FWFA75	Mo	228.0	CiDe75, WRDM79, CGR 78,
MgaBia	1184.6	FWFA75			GrMa75, KBAW74, WaTa80
MeFa	1178.2	Wagn80	MoB ₂	227.9	MECC73
Talc MgsSiaOrO(OH)	1180.3	WPHK 82	Mo ₂ B ₅	227.3	BrWh78
rund mBlantoto (ortit	110012		Mo ₂ C	227.8	BrWh78
Mn 2n			MoSi ₂	227.7	WPHK82
Mn	630.0	Φ	MoSe ₂	228.3	GrMa75
MnOn	642.1	Φ.	MoS ₂	229.0	PCLH76, GrMa75
Mn	638.8	T A NIM 91	MoS ₂	229.6	SSOT81, StEd75
Mn	630.0	WDDM70	MoCl ₃	230.0	GrMa75
MnN	6413	CSC72	MoCl ₄	230.6	GrMa75
MnS	640.3	CSC72	MoCl ₅	231.0	GrMa75, SwHe71
MnS heta	640.8	Anki76	MoO ₂	229.3	SaRa80, CGR78.
MnS, alpha	641.0	Acki76			CiDe75, KBAW74
MnS	642.1	Limo\$1	MoO ₃	232.6	GPDG79, KBAW74, SaRa80,
·MnIa	641.9	Acki76 CSC72			CiDe75, CGR78, GrMa75
MnBrs	642.0	Aoki76 CSC72	MoO ₃	232.6	WRDM79
MnCh	642.0	Ack/16 CSC72	(NH)42M0O4	232.1	SwHe71
MnFa	642.6	Auki76 CSC72	Al ₂ (MoO ₄) ₃	232.5	PCLH76
	012.0	AUKI/U, COC/2	Al ₂ (MoO ₄) ₃	233.3	NFS82

.

1 di speci

CoMoO	220.0	NEGRO	÷	7/96/76241/24/11	
CaMeO	232.0	INFS82	VN	397.4	STAB76
CoMOO4	232.4	GPDG79, CIDe75, AMFL74	BN	398.1	WRDM79, HJGN70
ChMoO4	232.2		S13N4	397.4	TLR78
K MoO	232.1	NIECEO	S ₂ N ₂	398.9	SDI077
No MoO	252.1	NFS82	SP(NH ₃) ₃	398.8	FlWe75
INa2IV10U4	232.1	CIDe75, NFS82, SwHe71,	S4N3Cl	400.4	HHJ69
No Mag 211 O	222.5	NoLS//	(NPCl ₂) ₃	400.3	HHJ69
$Na_2WI0U_4 \cdot 2H_2U$	232.5	Grivia/S	Cs(N*NN*)	397.9	SGRS72
$(NH_4)_2 WO_2 O_7$	252.5	AMFL/4	Cs(NN*N)	402.2	SGRS72
$(NH_4)_2 MO_7 O_{24} \cdot 4H_2 O$	232.1	Grivia/S	K(N*NN*)	398.5	SGRS72
$Cu_{2}WIO_{3}O_{10}$	232.4	HMUZ/8	K(NN*N)	402.8	SGRS72
$Cu_3MO_2O_9$	232.8	HMUZ/8	Li(N*NN*)	398.7	SGRS72
Rn_2MOO_6	231.8	NFS82	Li(NN*N)	403.1	SGRS72
$Cl_2MIO(NO)_2$	230.4	Nete/8	Na(N*NN*)	398.5	SGRS72
K4WIO2CI8	229.2	HUGH79	Na(N*NN*)	400.1	HHJ69
14(M0618)	228.8	BeWa79	Na(NN*N)	402.9	SGRS72
$Br_4(Mo_6Br_8)$	229.3	BeWa79	Na(NN*N)	404.5	HHJ69
$Cl_4Mo(Ph_3P)_2$	231.9	HuBa74	Rb(N*NN*)	398.1	SGRS72
Cl ₄ Mo ₂ (Et ₃ P) ₄	228.7	Walt77	Rb(NN*N)	402.4	SGRS72
Cl ₃ Mo(PhPMe ₂) ₃ mer	229.4	LeBr72	K3Co(CN) ₆	399.6	Vann76
Cl ₄ Mo ₂ (PhPMe ₂) ₄	228.7	Walt77	K3Cr(CN) ₆	397.6	Vann76, ZeHa71
(CO) ₅ Mo(Ph ₃ P)	228.3	HVV79	K ₃ Fe(CN) ₆	398.1	Vann76
$(CO)_4Mo(Ph_3P)_2$	227.8	HuBa74	K ₃ Mn(CN) ₆	398.3	Vann76
$(CO)_5Mo(Ph_3P)_3$	227.4	HuBa74	K ₄ Fe(CN) ₆	398.0	Vann76
$Cl_2Mo(CO)_2(Ph_3P)_2$	229.3	Nefe78	K ₄ Fe(CN) ₆	397.8	YNNA77
$Cl_2Mo(CO)_3(Ph_3P)_2$	228.8	HuBa74	K ₄ V(CN) ₆	398.5	Vann76
$Cl_2Mo(NO)_2(Ph_3P)_2$	230.3	HuBa74	Na ₄ Mn(CN) ₆	397.6	Vann76
$Cl_3Mo(NO)_2(MeCN)_2$	231.5	Nefe78	Na ₂ Fe(CN) ₃ (N*O)	402.7	YNNA77
Cl ₃ Mo(pyridyl) ₃	229.5	CEL:C76	Na ₂ Fe(CN*) ₃ (NO)	397.4	YNNA77
Cl ₄ Mo ₂ (pyridyl) ₄	228.9	Walt77	Na ₄ Fe(CN) ₅ N*O ₂	404.3	YNNA77
Cl ₄ Mo(pyridyl) ₂	230.8	SwHe71	Na4Fe(CN*)5NO2	396.6	YNNA77
Br ₄ (Mo ₆ Br ₈)(pyridyl) ₂	229.7	BeWa79	KCN	399.8	HHJ69
Cl ₁₂ Mo ₆ (pyridyl)	229.6	HaWa74	KCN	398.3	YNNA74
Cl ₄ Mo(bipyridyl)	232.0	CELC76	KCN	400.6	Vann76
Cl ₃ MoO(bipyridyl)	231.9	CELC76	NaCN	400.2	Vann76
Cl ₂ MoO ₂ (bipyridyl)	232.3	CELC76	(NH ₄) ₂ PtCl ₄	400.3	KaEl79
(CO)4Mo(bipyridyl)	226.3	GrMa75	(NH4)2SO4	401.3	SwAl74
$Cl_{12}Mo_6(Ph_3P)_2$	229.6	HaWa74	N*H4NO3	401.9	SwAl74, BCM78
Cl6(M06Br8)(Et4N)2	229.2	BeWa79	N*H4NO3	402.3	BTE77
$Br_6(Mo_6Br_8)(Et_4N)_2$	229.3	BeWa79	N*H4NO3	403.1	HHJ69
$(Bu_3N)_2Mo(CO)_4$	227.4	GrMa75	N ₂ H ₆ SO ₄	403.3	HHJ69
$(Bu_4N)_2Mo_4I_{11}$	229.0	BeWa79	N ₂ H ₆ SO ₄	401.7	Folk73
(Bu ₄ N) ₃ Mo ₂ Cl ₉	229.5	Walt77	NH ₃ OHCl, ionic	402.9	HHJ69
$(C_5H_5)Mo(CO)_3$	227.4	GrMa75	NH ₃ OHCl, ionic	401.4	Folk73
MoO ₂ (acac) ₂	232.0	GrMa75	NH ₃ SO ₃	402.6	HHJ69
			NaN ₂ O ₂	402.1	HHJ69
N 1s			KSCN	399.3	HHJ69
BN	398.1	Φ	KOCN	399.1	HHJ69
NH ₃	399.6	HHJ69	KOCN	397.9	Folk73
NH ₃	398.7	LaLu79, RNS73	NF4BF4	417.1	RNS73
Cr ₂ N	397.4	RoRo76	NaNO ₂	404.9	HHJ69, LiHe75
CrN	396.7	STAB76	NaNO ₂	403.9	BTE77
GaN	397.0	HeMa80	Ba(NO ₃) ₂	407.5	CLSW83
Ge ₃ N ₄	397.4	TLR78	Ca(NO ₃) ₂	408.0	CLSW83
ScN	396.2	STAB76	KNO3	407.2	NSLS77
TiN	396.9	STAB76	NH ₄ N*O ₃	407.3	BTE77

Perkin-Elmer Corporation Physical Electronics Division

2.2.7

1							
NH4N*O3	408.0	HHJ69		N(CH ₂ COOH) ₃	398.70	YoSa74	
NH4N*O3	405.8	BCM78		H ₂ NCH ₂ COOH	398.70	YoSa74	
NaNO ₃	408.1	HHJ69, LiHe75		H ₃ NCH ₂ COO ionic	400.60	YoSa74	
NaNO ₃	407.4	BTE77		EtCHNH ₂ COOH	400.60	YNAB77	
Ni(NO ₃) ₂	407.0	TRLK73		H ₂ N(CH ₂) ₃ COOH	398.80	YoSa74	
Ni(NO3)2 · 6H2O	407.6	NZB78		CH3CHNH2COOH	401.00	YNAB77, KNPP74	
Pb(NO ₃) ₂	407.2	TLR78		H ₂ NCONH ₂	399.50	LeRa77	
Sr(NO ₃) ₂	408.1	CLSW83		H ₂ NCSNH ₂	399.80	SrWa77, NBMO73	
K ₂ Pt(NO ₂) ₄	404.7	SNMK78		H ₂ NCSNH ₂	399.20	LeRa77	
K2Pt(NO2)6	404.7	SNMK78		CH ₃ CONH ₂	399.60	SNMK78	
K3Co(NO2)6	404.2	NBM073		PhCONH ₂	399.50	LBNN78, HHJ 69	
KaRh(NO2)6	404.1	SNMK78		PhN=NPh	399.60	BrFe76	
KaRh(NOa)6	407.3	SNMK78		PhN=NPh	400.10	LiHe75	
MoCl ₂ (NO) ₂	401.4	Nefe78		PhCH=NPh	399.10	SZNS77	
K ₂ Os(NO)Cls	402.8	Nefe78		1 1'-azonanhthalene	400.00	Vosh80	
K ₂ Ru(NO)le	402.5	Nefe78		NCN-C(N*Ha)a	300.20	LeD 977	
K ₂ Ru(NO)Brc	403 30	Nefe78		AmONO	404.5	Lille75	
Rh-(NO)-Ch	401.90	Nefe78		PhC-NOHC-NOHPh	400.6	Vach78	
Co(CO)-NO	402.20	BCCH72		MeC-NOHC-NOHMe	300.8	TUSH70 Veeb70	
Ea(CO) ₂ (NO) ₂	401.80	BCCH72		Ni(dimethylalyovime)	399.0	10511/0	
Co(NH-)-Cl-	400.10	VNIAP77		Cu Soliadaldovima	400.4	NLB/8	
CO(INTI3)SCI3	200.60	NZD 70		Cu Sancylaidoxime	400.5	BuBu/4	
NI(INTI3)6DI2	399.00	NZD 70		Cu(8-hydroxyquinor) ₂	399.5	105a/4	
NI(NH3)6(CIO4)2	399.90	NLD /8		8-Quinoinoi	398.9	Yosh80	
Pt(N*H3)2(NO2)2	400.40	Nele/8, CMHL//		Cr(CO)5INH3	399.5	BCGH72	
$Pt(NH_3)_2(N^*O_2)_2$	404.40	Nete/8, CMHL//	£	N(EtO) ₃ SiCl	400.5	GrHe77	
Pt(NH ₃) ₂ Cl ₂	400.20	Nefe/8, CMHL//		N(EtO) ₃ SiH	399.8	GrHe77	
Rh(NH ₃) ₆ Cl ₃	400.10	Nete/8		Morphine	398.5	SCKK75	
Me4NBr	401.40	SGC174		Morphine H ₂ SO ₄	401.2	SCKK75	
MeiNCI	401.50	EMGK74					
Me ₄ NCl	402.30	LiHe75		Na 1s			
Et4NCl	401.40	EMGK74		Na	1071.8	Φ	
Et ₃ NHCl	401.20	LiHe75		NaCl	1072.1	Φ	
Et ₃ NHHSO ₄	401.80	EvRe81		Na	1071.8	BaSt75	
Bu ₃ N	398.90	LiHe75		Na	1071.4	KLMP73	
BuNH ₃ HSO ₄	401.00	EvRe81	*	NaI	1071.7	WRDM79	
Bu4NHSO4	402.20	EvRe81		NaBr	1071.7	Wagn75	
EtNH ₂	398.90	BCGH73		NaBr	1071.4	MVS73	
EtNH ₂ BF ₃	401.40	BCGH73		NaCl	1071.6	Wagn75	
NH ₄ Cl	400.80	SwAl74		NaCl	1072.5	SGSO70	
NH ₄ Cl	401.50	EMGK74, BTE 77		NaCl	1071.5	KOK83	
NH ₃ BF ₃	401.90	BCGH73		NaCl	1071.8	NSLS77	
C5H5N	398.80	LiHe75		NaC1	1072.3	HHDD81	
C5H5N	399.30	BCGH73		NaF	1071.2	Wagn75	
C ₅ H ₅ NHCl	401.00	HHJ 69		NaF	1071.0	MVS73, NSLS77	
C5H5NBF3	401.40	BCGH73		Na ₂ CO ₃	1071.5	WRDM79	
Hexamethylenetetrarnn	399.40	LiHe75		Na ₂ CO ₃	1071.7	HHDD81	
PhCN	399.20	LiHe75		Na ₂ HPO ₄	1071.6	WRDM79	
C(NH ₂) ₃ Cl	400.10	LeRa77		Na ₂ HPO ₄	1071.5	Swif82	
PhNH ₂	399.40	LiHe75		Na ₂ S ₂ O ₃	1071.6	Wagn75	
Me ₃ NO	403.00	LiHe75		Na ₂ SO ₃	1071.3	Wagn75	
OP(NMe ₃) ₃	399.10	FIWe75		Na ₂ SO ₄	1071.2	Wagn75	
P(NMe ₂) ₃	398.30	GBMP79		Na ₂ SeO ₃	1070.8	Wagn75	
Cysteine HCl Hydrate	401.20	SSEW79		Na ₂ TeO ₄	1071 1	Wagn75	
Cysteine	400.00	LIMa79		NaaPOA	1071.1	MVS73 Swif22 CM	1070
H ₃ N(CH ₂) ₃ COOH ionic	400.80	YoSa74		Na/P2O2	1070.8	MV\$72	1019
HN(CH2COOH)3 ionic	400.70	YoSa74		Na Poor	1071.6	GMD70	
	10 10 10 10 10 E	H 1.5 P 2 C 1 P 4 P 4		a south Tes 1	10/1.0	0101019	

KOK83 Wagn75 WRDM79 WRDM79 Swif82 Wagn75 Wagn75 Wagn75 Wagn75 Wagn75 Swif82 Swif82 Swif82 WRDM79 Wagn75 Wagn75 Wagn75 Swif82 WRDM79 Wagn75 Wagn75 Wagn75 Wagn75 WRDM79 Wagn75 Wagn75 WRDM79 Wagn75 Wagn75 Wagn75 Wagn75 Wagn75 Wagn75 BaSt75 WRDM79 WRDM79 WPHK82 WPHK82 WPHK82 Wagn75 WRDM79 WRDM79

Ф NyMa80

Bahl75 Bahl75 Bahl75 Bahl75 Bahl75 MSC73 Bahl75 MSC73 MSC73

MSC73, NSCP74, WRDM79

3	NaClO ₄	1071.8	MV\$73	NaCl	9901
1	NaH2PO2	1071.1	Swif82	NaF	908.6
1	NaH ₂ PO ₄	1072.0	Swif82	NacCo	989.8
1	NaHCO ₃	1071.3	WRDM79	Na ₂ HPO.	080.0
- i	NaN ₃	1070.8	SGRS72	Na ₂ HPO ₄	0807
- 8	NaNO ₂	1071.6	Wagn75	NasS-Or	0001
	NaNO ₃	1071.4	Wagn75	NasSO.	0004
3	NaPO	1071.7	Wagn75	NasSO.	080.8
- 8	NaPO ₃	1071.7	Swif82, GMD 79	NasSeOs	001.0
- 8	Na ₂ Cr ₂ O ₇	1071.6	WRDM79	Na TeO.	000.5
1	Na ₂ CrO ₄	1071.4	Wagn75	Na PO.	000.1
	Na ₂ CrO ₄	1071.0	ACHT73	NaHaPOa	090.0
	Na ₂ IrCl ₆	1071.9	Wagn75	NaH_PO	0801
	Na2MoO4	1070.9	Wagn75	NaHCOa	000.0
	Na ₂ MoO ₄	1071.8	NSLS77	NaNO ₂	, 909.0
	NapPdCL	1071.8	Wagn75	NaNO.	909.0
	NasSnO3 · 3H2O	1071.1	WRDM79	NaPO.	909.0
	Na ₂ WO ₄	1072.0	Wagn75	NaPO.	969.5
1000	NaAsO ₂	1070.9	Wagn75	Na Cr.O.	909.4
	NaBiO	1071.3	WRDM79	Na ₂ Cr ₂ O ₇	990.0
	NaCrO	1072.4	ACHT73	Na ₂ CiO ₄	991.2
	NaBeE	1071.8	NKRP73	Na2IICI6	989.2
	NacGeEc	1071.7	Wagn75	Na2WIOO4	991.0
	NaSiE	1071.7	Wagn75	Na2POCI4	990.2
	NaSiE	1072.1	NSI \$77	Na25IIO3 · 5H2O	990.3
	Na-TaF-	1071.0	NKRP73	Na2WO4	989.6
	NaTIE	1071.6	Wam75	NaASO2 NaBIO	990.7
	Na-7rE	1071.5	Wagn75	NaDIO3	990.9
	Na AIE	1071.9	Wagn75	Na ₂ OCr ₆	998.1
	Na TaE	1071.8	NE DD72	IN2251F6	987.7
	NaRE.	1071.0	Waar75	Na ₂ 11F ₆	988.5
	NaDaE.	1071.0	WZDD72	Na ₂ ZIF ₆	988.7
	NaTaF.	1071.9	NKDF73	Na3All ⁶	988.0
	Na-O	1071.7	NKDF75	NaBr4	987.1
	NaOOCH	1072.5	WBDM70	Na ₂ O	989.8
	Na-C-O	1071.1	WDDM70	NaOOCH	989.8
	Na ₂ C ₂ O ₄	1070.8	WDUK82	Na ₂ C ₂ O ₄	990.5
	Ludrovucodalite	1072.2	WDUK82	Mol Sieve A	988.8
	Natrolite	1070.5	WDUK82	Mol Sieve X	988.4
	Mol Sieve A	1072.4	WPHK82	Mol Sieve Y	987.8
	Mol Sieve X	1071.0	WDUK82	NaOAc	989.9
	Mol Sieve X	1072.5	WPHK82	NaOOCCH ₂ SH	990.4
	NoOAc	1072.0	WFHK82	NaO ₃ SPh	989.7
	NaOAc	1071.1	wagn/5		
	NaOAC	1071.7	HHDD81	Ab 3d	
	NaOOCCH25H	1071.2	WRDM/9	Nb	202.4
	NaO35FII	1071.5	WKDM/9	Nb	202.3
	p-(NaUCUCMe=CH2)	1072.2	HHDD81	Nb	202.2
N. 1	211			Nb	201.8
Na I	ALL			Nb ₃ Te ₄	202.8
	INa .	994.3	BaSt/5	NbTe ₄	203.8
	Na	994.3	KLMP73	Nb ₃ Se ₄	203.0
	Na .	994.5	SRHH78	NbSe ₂	203.4
	Nal	991.2	WRDM79	NbS ₂	207.7
	NaBr	990.6	Wagn75	NbN	203.8
	NaCl	990.3	Wagn75	NbBr ₅	207.1
	NaCl	990.0	SGSO70	NbCl ₅	208.0

Perkin-Elmer Corporation Physical Electronics Division

D

-

NbO	202.8	SPB76	NipO ₃	855.8	KiWi74
NbO	203.7	Bahl75	Ni(OH) ₂	855.6	DPS77 LEWS79 McCo75
NbO	204.7	FCFG77	Ni(NO ₃) ₂	857.1	TRLK73
Nb ₂ O ₅	207.5	SPB76, MSC73, FCFG77,	Ni(NO ₃)2 · 6H ₂ O	856.9	NZB78
		NFS82, NGDS75	NiAl ₂ O ₄	855.8	SDR 80 1 FWS79
LiNbO ₃	207.1	StHo79	NiAl ₂ O ₄	857.4	NoHe76
KNbO ₃	206.5	MSC73	NisSiO	8561	I FWS79
CaNb ₂ O ₆	206.8	Bah175	NiClO ₄ · 6H-O	857.2	NZR78
CdNb ₂ O ₆	207.0	Bahl75	NiFe ₂ O ₄	855.4	McCo75
Ca ₂ Nb ₂ O ₇	206.7	Bahl75	NiRh ₂ O ₄	855.9	NFS82
RhNbO ₄	206.5	NFS82	NiSO	856.8	ShRe79
ClaNbsClas(HaO)a - 4HaO	204.7	BeWa79	NiSiO	856.5	SRD70
Cls(NbsCl12)(EtaN)3	204.7	BeWa79	NiWO	857.7	NoHe76
Bre(NbeClip)(BueN)2	204.7	BeWa79	NaNilO ₆ · H ₂ O	8564	N7R78
Cla(Nb ₆ Cla)(PraP)	204.6	BeWa79	KaNiF	861.0	TELETS
Cl ₂ (Nh ₂ Cl ₂₂)(Me ₂ SO) ₄	204.6	BeWa79	Ni(CO)	854.8	PCCH72
Citte topositife in 2007	501.0	Demay	Br-Ni(NH-)	855.0	NZD79
Nd 3d			Ni/NH-).(ClO.)	055.5	N2D70
Nd	090.9	4	Ni(acac)-	855.0	NZD20 TDI V22
Nd	900.0	φ \$= D =90	Ni(acac) ₂	0545	NZB78, IKLK/3
180203	962.0	54K460	NI(OAC)2 · 4H2O	850.5	NLB/8
NJAJ			Ni(Csh5)	034.2	BCDH73
Na 4a	100.0	a D 44	CLNE(DE D)	856.0	CIAd/1, TKLK/3
Nd ₂ O ₃	120.8	SaRa80	Cl NI(Ph P)	855.0	BNSA/0
			Cl2INI(Ph3P)2	854.4	NZB/8
Ne 1s		7	Cl2INI(Ph3P)2	857.0	STHU/6
Ne in graphite	863.1	Φ	Cl M(dimethyigiyoxim) ₂	855.0	NZB/8, Yo Ya81
Ne in Ag	862.4	CiHa74	Cl2INI(DIPYIIdYI)	855.7	NSWU//, NZB/8
Ne in Au	861.6	CiHa74	NI(SPR)2	854.0	BBFR//
Ne in Cu	862.2	CiHa74	Cl2NI(NH2CONHCONH2)2	850.7	YYS/8
Ne in Fe	863.4	Wagn75	Ni(2-aminobenzoate) ₂	855.9	Yo Ya81
			NI(P(OEI)3)4	853.8	TRLK73
Ne KLL			$Cl_2Ni(El_3P)_2$	854.7	FaBa79
Ne in Fe	818.0	Wagn75	$BI_4NI(EI_4N)_2$	855.2	EMGK74
0			N: I MM		
Ni 2p				0.16.1	
Ni	852.7	Φ	N1	846.1	PEJ82
NiO	853.8	Φ	N	846.2	WRDM79
Ni	852.7	LANM81	INI	846.1	KiWi74, KGW76
Ni	852.7	ALMP82			
Ni	852.8	PEJ82	O Is		
Ni	852.7	WRDM79, ShRe79	Al ₂ O ₃ , sapphire	531.0	Φ
NisYb	852.7	WWC78	Ag ₂ O	529.2	Scho73
Ni ₂ Si	853.0	GGM82	AgO	528.6	Scho73, SRD80
NiSi	853.5	GGM82	Al_2O_3	531.3	Nefe82, SDR80,
NiS	852.8	ShRe79			BGD75, ZSOS79
NiS	853.2	DPS77	Al ₂ O, sapphire	531.0	Tayl82, WPHK82
NiS	855.1	NgHe76	Al ₂ O ₃ , alpha	531.8	WPHK82
Nil ₂ · 6H ₂ O	855.3	NZB78	Al ₂ O ₃ , gamma	530.9	Barr83, WPHK82
NiCl ₂	856.7	TRLK73, KIHe83, YYS78	As ₂ O ₃	531.7	Tayl82, MINN78
NiF ₂ · 4H ₂ O	857.5	NSLS77	As ₂ O ₅	531.6	WZR80
NiO	853.5	WRDM79	B ₂ O ₃	533.0	NGDS75
NiO	854.3	DPS77, KIHe83, LFWS79,	BaO	528.3	InYa81
		NFS82, NZB78, SRD79	BeO	531.7	NGDS75, NFS75, HJGN70
NiO	854.3	KiWi74, McCo75	Bi ₂ O ₃	530.0	NGDS75, DSBG82
Ni ₂ O ₃	857.3	NgHe76	CaO	529.4	InYa81
		and the second se			

CaO	531.3	WZR80	Nb ₂ O ₅	530.6	NGDS75 NESS2
CdO	529.2	NFS75, NGDS75, SBB80	Nb ₂ O ₅	5313	SaRa80
CdO ₂	530.3	HGW75	NhOa	5307	SaRaby SaDavo
Ce ₂ O ₃	530.3	PKHL80	Nd ₂ O ₂	530.6	SaRaou SaRaou
CeO ₂	529.2	NGDS75	NiaOa	521.0	VINETA N. H. TC
CopOn	529.9	McCo75	NiO *	520.6	KIWI/4, NgHe/6
CopOr	530.2	NGDS75 WZP80	NO	529.0	DPS77, LFWS79, NFS82,
C03O4	529.6	BGD75	DO (hilding O)	522.0	NGDS75, SRD79, WZR80
C0304	5207	CBR76 CDDC70 HSU76	P_2O_5 (bridging O)	532.2	NGDS75
CoO	520.1	PCD75 NECO2 NCDC75	P_2O_5 (bridging O)	532.6	GMD79
Cro.	521.0	HoT-90 DP274	P_2O_5 (nonbridging O)	533.6	NGDS75
01203	551.0	W72B90, DD5291	P_2O_5 (nonbridging O)	534.3	GMD79
C = O	521 5	WZROU, BDFP81	PbO	528.9	NFS82
C12O3	551.5	NGDS75	PbO	531.6	WZR80
	529.3	IIKK/6	PbO, rhombic	529.4	KOW73
CrU ₃	530.2	DPS76	PbO, rhombic	530.9	ZiHe78
CsO ₂	527.5	YaBa80	PbO, tetragonal	527.5	KOW73
Cs ₂ O ₄	530.5	YaBa80	PbO, tetragonal	528.9	ZiHe78
Cu ₂ O	530.3	HMUZ78, MSSS81, RBO72, Scho73b	PbO ₂	527.4	KOW73
CuO	529.6	MSSS81, McCo75, HMUZ78,	PbO ₂	529.0	TLR78
		RB072, Scho73b	PdO	529.3	KGW74
Fe ₂ O ₃	530.2	NGDS75, WZR80,	Pr ₂ O ₃	529.3	SaRa80
		Kilk73, Limo81	PrO ₂	528.6	SaRa80
Fe ₂ O ₃	529.6	HSU76, NSLS77	PtO ₂	531.4	CMHL77
Fe ₂ O ₃ , alpha	529.6	McZe77	ReO ₂	530.1	BHU81
Fe ₂ O ₃ , gamma	529.8	McZe77	ReO ₃	531.9	BHU81
Fe ₃ O ₄	530.0	McZe77	Rh ₂ O ₃	530.4	CMHI 77 NES82
FeO	529.8	McZe77	RuO ₂	529.4	MWI E78
Ga ₂ O ₃	530.8	NGDS75, Scho73a.	RuO ₂	529.4	KiWi74 Maci92 SaDa90
		WZR80, ZSOS79	RuO	530.7	KiWi74, WC0102, SaKa00
GeO ₂	520.0	NGDS75, WZR80	Sh ₂ O ₂	530.0	W7P80
H ₂ O	533.2	NGDS75, WZR80	Sc2O2	530.0	NCDS75 WZD90
HfO ₂	530.4	NGDS75	SiOn	522.0	Dorde KAUZA NODOZE
1205	529.9	Sher76	SiOn	524.2	KINDS, KMH /8, NGDS/5
In ₂ O ₃	529.8	NGDS75	SiO	522.5	NIK/3
In ₂ O ₂	530.3	CERS80	SiO ₂ gal	522.5	NSLS/7, SKD/9
In ₂ O ₂	530.5	1 4 K 77	SiO ₂ , ger	532.8	WPHK82
La ₂ O ₂	528.6	NGDS75	SiO ₂ , vycor	532.9	WPHK82
LinO	5313	CSEC70	SiO ₂ , alpha cristobal	532.5	WPHK82
	520.5	NGD\$75	SiO ₂ , alpha quartz	532.7	WPHK82
MaO	530.0	NERSO NODS75	S_1O_2 , alpha quartz	533.2	TLR78
MgO	531.0	INF362, NOD373	SnO	530.1	ADP\$77
MgO	522.1	10 1do 1 W7D 90	SnO_2	530.6	ADPS77, LAK77, MWLF78,
MgO	5207	W ZR8U		1/2/2/2015/1	NGDS75, TLR78
Min()	529.7	OHI75	SrO	530.5	VaVe80
MIN3O4	529.6	OHI75	Tb ₂ O ₃	528.8	SaRa80
M ₂ O ₃	529.0	OHI/S	TbO ₂	528.8	SaRa80
MnO ₂	530.0	NGDS75, WZR80	TeO ₂	530.2	GBP81, SBB80
MnO ₂ , beta	529.6	OHI75	ThO ₂	530.0	NGDS75
MoO ₂	531.1	PCLH76	TiO ₂	529.9	MWLF78, WZR80, NGDS75
MoO ₂	530.7	CGR78, KBAW74	UO ₂	530.4	MSSS81
MoO ₂	529.9	SaRa80	UO ₃	529.9	MSSS81
MoO ₃	530.9	NGDS75, NFS82	V_2O_3	530.5	CGR78
MoO ₃	531.6	PCLH76	V_2O_4	530.0	KKL83
MoO ₃	530.4	SaRa80, KBAW74,	V_2O_5	529.9	BCM78, KKL83
		HMUZ78, CGR78	V ₂ O ₅	530.5	NSLS77, NGDS75, NFS82
Na ₂ O	529.7	BaSt75	WO ₂	530.4	CoRa76
Nb ₂ O ₅	529.6	GBP81			

221

ŧ.

WO ₃	530.6	CoRa76, KMH78, NFS82,	Na ₂ CO ₃	531.6	HHDD81, WZR80
		NGDS75, NSLS77	PbCO ₃	531.2	WZR80
ZnO	530.4	NFS82, NGDS75, NSLS77,	CsClO ₄	532.7	MVS73
		Scho73, WZR80, ZSOS79	KClO4	532.2	MVS73
ZrO ₂	530.2	NGDS75	KClO ₃	532.3	MVS73
ZrO ₂	530.9	WZR80	LiClO ₄	533.4	MVS73
Al(OH)3, bayerite	531.4	WPHK82	NaClO ₄	533.0	MVS73
Al(OH)3, gibbsite	531.5	WPHK80	RbClO ₄	532.8	MVS73
AlOOH, boehmite	531.5	Tay182	AbSiOs kvanite	531.3	AnSw74
Co(OH) ₂	531.2	HSU76	AbSiOs mullite	531.6	AnSw74
Cr(OH)a	531.2	DPS76	Al ₂ SiO ₅ sillimanite	5313	AnSw74
Cu(OH)2	531.2	MSSS81	AbSiO ₈ sillimanite	531.9	WDHK 82
Fe(OH)	531.3	HSU76	Car(HSiO ₄)	531.2	CIR:76
FeO*OH	530.1	McZe77	Cosio	531.6	WZDRO
FeOO*H	531.2	McZe77	NasSiO*++ 5H-O '	530.6	CID:76
In(OH)	531.8	WZR80	No.SiO	530.0	CIRI70
KOH	531.8	Kilv73	Ni-SiO	532.5	CIRI/O
LIOH	531.0	CSEC70 W7P80	NISIO	522.2	LPW579
Mg(OH)	530.0	HNIIW78	MaSiO* 2010	532.5	SKD79
NaOU	522.9	Deci75	MigSiO*3 · 2H2O	532.0	CIR1/6
NGOLD	5212	LEW670	MigSiO ₃ ·2H ₂ O ⁺	532.8	CIR1/6
NI(Orl)2	531.5	CEDSSO	Al ₂ (MoO ₄) ₃	531.0	PCLH76
AIPO4	520.1	CPK580	Al ₂ (WO ₄) ₃	532.0	NgHe76
C\$3PO4	530.1	MVS/3	CaCrO ₄	529.5	ACHT73
C\$4P207	530.2	MVS/3	CaMoO ₄	530.6	NFS82
K3PO4	530.4	MVS73	CaWO ₄	529.9	NFS82
K4P2O7	530.1	MVS73	p-Benzoquinone	532.2	OYK74
Li ₃ PO ₄	531.5	MVS73	Hydroquinone	533.5	OYK74
L14P2O7	531.7	MVS73	PhCOONa	531.4	LBNN78
Na ₃ PO ₄	530.4	MVS73, GMD79	p(Me ₂ Si(O))	532.5	WPHK82
Na ₄ P ₂ O ₇ (bridging O)	531.1	GMD79	Methylsilicone Resin	532.7	WPHK82
Na ₄ P ₂ O ₇ (nonbridging O)	532.9	GMD79	Phenylsilicone Resin	532.6	WPHK82
NaPO ₃ (bridging O)	531.5	GMD79	PhCONH ₂	532.2	LBNN78
NaPO ₃ (nonbridging O)	533.4	GMD79			1
Ba(NO ₃) ₂	533.0	CLSW83	Os 4f		C
Ca(NO ₃) ₂	533.6	CLSW83	Os	50.7	Φ
KNO3	532.7	NSLS77	Os	50.6	Folk73 BNMN79
Pb(NO ₃) ₂	532.7	TLR78	Os	50.2	BHHK70
BaSO ₄	531.8	CLSW83	OsCl ₃	53.1	Nefe78
BaSO ₄	532.5	WZR80	OsO ₂	52.0	SaRa80
CaSO ₄	532.0	CLSW83, WZR80	OsO ₂	52.7	Folk73
Cr2(SO4)3	532.1	DPS76	Os(HSO ₁) ₂	52.2	Nefe78
FeSO ₄	532.4	Limo81	K ₂ Osl ₆	51.9	Nefe78
K ₂ SO ₄	531.2	WZR80	K2OsBr6	52.9	Nefe78
NiSO ₄	532.1	NSLS77, Nefe82	K ₂ OsCl ₆	53.0	Folk73
PbSO ₄	531.5	ZiHe78	K-OsCk	53.2	CoHe72
ZnSO4	532.5	Nefe82	KaOsCh	53.5	LoB-72
Na ₂ SO ₃	531.2	WZR80	KaOsCle	53.0	Nefe79
Na2S2O3	531.8	WZR80	KaOsOs(OH)	55.7	Nofe70
PbSO ₃	530.8	ZiHe78	Os(NHa)/Nala	50.0	Ealle72
PbS ₂ O ₃	531.1	ZiHe78	Os(NH ₃) ₅ N ₂ Br ₂	52.0	FOIK75
Ag ₂ CO ₃	530.6	HGW75	Os(NH ₃) ₃ N ₂ DI ₂	51.6	FOIK73
BaCO ₃	531.3	CLSW83	Os(NH-)-N-Cl	51.0	FOIK75
CaCO ₃	531.4	CLSW83, WZR80	K-Os(NO)P-	52.2	POIKTS Not-79
CdCO ₃	531.4	HGW75	K2Os(NO)CL	53.5	Nele/8
CuCO ₃	531.5	WZR80	HOs(NO)CIS	53.4	Nete78
Li ₂ CO ₃	531.5	CSEG79	OCL (ED)	51.1	Nete78
A THE PARTY OF A THE A		www.hat.	USC-14 LAJE 12	32.0	Lebr/2

Ψ

OsCl4(PhPMe2)2 trans	53.0	LeBr72	(PhO) ₃ PS	134.7	MSAV71
OsCl ₃ (PhPMe ₂) ₃ mer	51.7	LeBr72	(PhO) ₃ PSe	134.3	MSAV71
OsCl ₂ (PhPMe ₂) ₄ trans	50.5	LeBr72	(PhO) ₃ PO	133.6	CFRS80
			(PhO) ₃ PO	134.8	FIWe75
P 2p			Ph ₃ POBBr ₃	133.7	HVV79
P	129.9	Φ	Ph ₃ POBCl ₃	133.4	HVV79
Р	130.0	NSDU75	Ph ₃ POBF ₃	133.3	HVV79
P (red)	130.0	ScBr81	Ph ₂ PO(OH)	133.3	MSAV71
CuaP	129.6	NSDU75	OPCI(OEt) ₂	134.8	FIWe75
CuP ₂	129.7	NSDU75	OPF-NPh	135.8	FIWe75
GaP	128.8	WaTa80, IMNN79, NIMN78	OPCHOEL	135.2	FIWe75
GaP anodically oxid	128.5	MIN81	OP(NMca)a	133.4	FIWe75
GaP thermally oxid	129.7	MIN81	Ph₄PI	133.0	HVV70
InP	128.3	CFR S80	PhAPBr	133.5	I MESO SPH72
InP	129.4	Bert81	Ph PC1	132.8	HVV70
7n-P	128.3	NSDU75	MePPhaBr	133.0	SPU 2
ZnP.	120.8	NSDU75	(Ph.P).P*F.	136.7	I MERO
AIPO.	132.0	CERS80	(Ph.P*), PF.	133.5	1 MERO
Ce-PO.	132.1	MV\$73	Pt(Ph_P).	131.2	Diga72
K-HPO.	132.1	Bart 81	Ph.P-CHCOPh	131.2	Dela76 STA74
K-PO.	133.2	MVS73	Ph_P-CHCOOMe	122.5	Date 70, 51A 74
Li-PO.	133.6	MVS73	CL-Ni(Ph-P)-	132.5	DNC 470
Na HPO.	133.1	Swift? WPDM70 Watago	Ni(CO)-(Ph-P)-	132.4	TDI V72
Na.PO.	132.4	MVS72 CMD70 Swift2	ru(co)/(ru)r/2	151.4	TREK/S
Nati Do	132.4	Swife?	Db 46		2
NaPO.	134.2	Swife2 CMD20	10 41	126.0	
PL DO	134.2	SWI102,GMD79	PD	136.9	Φ
NoU DO	132.5	WIY5/3 Swife2	PD	136.4	LKMP73
Nan2PO2	132.0	SWII62	Pb	136.8	SFS77
V D O	132.0	MV872	Pb	136.8	BeF180, KOW73, KiWi73,
K4P207	132.0	MVS73	DI .	1010	TLR78, WRDM79, WaTa80
LI4P2O7	134.3	MV872 CMD70 D +101	Pb	136.8	HSBS81, OCH79
Na4P2O7	133.2	MVS73, GMD79, Bens1	Pb98Sn2	136.8	HSBS81
R04P207	133.1	MINDIZ NODOZE OFDORO	Pble	137.4	SFS77
P4O10	155.5	NIMIN/8, NGDS/5, CFR580,	PbSe	137.4	SFS77
OPCL	125 7	Elwers	PDS	137.6	MoVa73, SFS77, ZiHe78
OPC13	135.7	Fiwe/3	Pbl ₂	138.7	MoVa73
SPC13	135.5	Flwe/5	PbBr ₂	138.8	NeFe82
SP(INII3)3	135.4	Fiwe/3	PDP2	139.0	MoVa73
rnar	150.9	TRLK73, GBMP79	PbO	138.9	KOW73, ZiHe78, WRDM79, NFS82, NSSP80, MoVa73
Ph ₃ P	130.9	HVV79, LMF80, SRH72	PbO	138.9	MoVa73, BeF180
Ph ₃ P	130.9	MSAV71, GZF73	Pb ₃ O ₄	138.0	MoVa73
Ph ₃ PS	132.5	HVV79, STA74,	PbO ₂	137.4	BeF180, KOW73,
		FlWe75, MSAV71			TLR78, MoVa73
Ph ₃ PSe	132.6	HVV79, MSAV71	Pb(OH) ₂	138.4	NSSP80
Ph ₃ PO	132.5	GZF73, STA74, FIWe75,	Pb(NO ₃) ₂	139.3	BeF180, TLR78, NSSP80
No. Laborator		MSAV71, HVV79, BNSA70	PbSO ₃	138.6	ZiHe78
Ph ₃ PBI ₃	132.2	HVV79	PbSO ₄	139.4	NSSP80, ZiHe78
Ph ₃ PBBr ₃	132.1	HVV79	PbS ₂ O ₃	138.4	ZiHe78
Ph ₃ PBCl ₃	132.2	HVV79	PbRh ₂ O ₄	137.3	NFS82
Ph ₃ PBF ₃	132.0	HVV79	Ph ₄ Pb	138.2	MoVa73
Ph ₂ PSH	132.3	NSWM80	Ph ₃ PbCl	138.9	MoVa73
Ph ₂ PSeH	132.3	NSWM80	Ph ₂ PbCl ₂	139.4	MoVa73
(PhS) ₃ P	134.3	MSAV71	Pb(OAc) ₂	138.5	BeF180
(PhS) ₃ PS	133.1	MSAV71	Pb(OAc) ₄	137.2	BeF180
(PhO) ₃ P	134.7	MSAV71			

Pd	3d						Pr 4d		
	Pd		335.1		Φ		ProO3	116.1	SaRa80
	Pd		335.1		NyMa80		PrO	116.2	SaRa80
	Pd		335.2		BiSw80			110.0	Jakaoo
	Pd		335.2		BiSw80		Pt 4f		
	Pd		335.5		BiSw80		Pt	71.2	Φ.
	Pd		335.2		JHBK73, Asam76		Pr	71.0	110PF72
	Pd	1965	335.3		WRDM79, WeAn80, BHHK	70.	Pr	71.0	DUUV20 VWD71 NLC79
					Scho72, GGM82, KBAM72			11.4	Scho72 WDDM70 Woon75
	Ag ₃ OPd ₅ O		334.6		WeAn80		Pt	71.2	CMHI 77, Col o73
	AgsOPd ₂ O		334.9		WeAn80			/1.4	Uniter 1, Calers,
	AgoOPd ₁ O		334.9		WeAn80		PrSi	73.0	GCM92
	AlgOPd ₂ O		337.4		WeAn80		PtaSi	72.5	CGM82
	Mg75Pd25		336.2		WeAn80		PiCl.	72.6	EDCC25
	Pd ₂ Si		336.8		GGM82		PICI.	75.5	EPCC75
	Pd ₂ Si		336.2		AWI 80		DiO	73.5	EPCC75
	PdIa		336.4		KBAM72		PiO	73.8	KWD/I
	PdBra		337 1		KRAM72		PiO	14.2	EPCC75
	PdCh		337.8		KRAM72 NKRD73		PIO ₂	14.0	KWD71
	PdO		336.3		KGW7A		.PIO ₂	75.0	EPCC75
	PdO		337.0		KGW74		Pt(OH) ₂	72.6	HaWi77
	Na-PdCl.		338.0		SoTo76		K ₂ Ptl ₆	73.4	SNMK78
	K-DACL		228.0		VDAM72 NVDD72		K2PtBr4	72.6	SNMK78
	K2PdC4		227.2		KDAMIZ, NKDETS		K2PtBr6	74.6	SNMK78
	K2FUDI4		220.0		KDAM72		K ₂ PtCl ₄	73.0	CMHL77, EPCC75, SNMK78
	K2FU(INO2)4		339.0		KDAM72		K ₂ PtCl ₄	73.4	Wagn75
	N2POCI6		340.2	1.6	KBAM/2, Nele/8	2	K ₂ PtCl ₆	75.4	CoHe72, EPCC75, LeBr72,
	Br2Pd(Ph3P)2		337.8	(4)	KBAM/2				SNMK78
	Cl2Pd(Ph3P)2		337.8		KBAM/2, NSMS/9		K ₂ PtF ₆	77.6	SNMK78
	12Pd(Ph3P)2		337.5		KBAM72		Pt(NH ₃) ₄ Br ₂	73.4	Nefe78
	$(CN)_2Pd(Pn_3P)_2$		338.2		KBAM72		Pt(NH ₃) ₂ Cl ₂	73.2	CMHL77, Nefe78
	Pd ₂ (Ph ₃ P) ₂		336.6		NSMS79		Pt(NH ₃) ₄ Cl ₂	73.4	SNMK78
	Cl ₂ Pd(Ph ₃ P) ₃		342.9		BNSA70		Pt(NH ₃) ₆ Cl ₄	76.3	SNMK78
	Pd(Ph ₃ P) ₄		336.0		NSMS79		Pt(NH3)2(NO2)2	73.7	Nefe78
	Pd(OAc) ₂		338.6		NSMS79		Pt(NH3)2(NO2)2	74.4	CMHL77
	Pd(SPh) ₂		337.7		BBFR77	a2	K ₂ Pt(OH) ₆	75.1	SNMK78
							K ₂ Pt(NO ₂) ₄	74.1	SNMK78
Pd	MNN						K ₂ Pt(NO ₂) ₆	75.9	SNMK78
	Pd		327.8		WeAn80, WRDM79		(NH ₄) ₂ PtCl ₄	72.4	KaE179
	Ag ₃ OPd ₅ O		328.8		WeAn80		Pt(Ph ₃ P) ₃	71.4	Nefe78
	Ag ₈ OPd ₂ O		329.8		WeAn80		Pt(Ph3P)4	71.4	Rigg72
	Ag9OPd1O		329.7		WeAn80		Cl ₂ Pt(Ph ₃ P) ₂ cis	72.3	CAB71
	Al ₈ OPd ₂ O		325.5		WeAn80		Cl ₂ Pt(Ph ₃ P) ₂ cis	73.0	Rigg72
	Mg75Pd25		326.4		WeAn80		Cl ₄ Pt(Et ₃ P) ₂	75.3	LeBr72
							Cl ₄ Pt(Et ₃ P) ₂	75.9	Nefe78, Rigg72
Pm	3d						HCIPt(Et ₃ P) ₂	72.6	Rigg72
	PmCl ₃		1033.5		MNTB70		O2Pt(Ph3P)2	73.0	Rigg72
							Pt(SPh)2	72.8	BBFR77
Pm	4d						Ph3PPt(SPPh2)	71.8	NeSa78
	PmCla		128.3		MNTB70		Cl ₂ Pt(Et ₃ P) ₂	73.1	Rige72
			2000				I2Pt(Et3P)2	72.5	Rigg72
Pr	3d						I2Pt(Me3P)2 cis	72.6	CAB71
	Pr		031.8		đ		I2Pt(Me3P)2 trans	72.7	CAB71
	ProOn		033.2		SaRa20		I2Pt(CH3CONH)a	74.6	NeSa78
	PrO ₂		0353		SaRa80		Br2Pt(CH3CONH)4	74.9	NeSa78
			1000		Juildov		Cl2Pt(CH3CONH)4	74.8	NeSa78

Appendix B. Chemical States Tables

11.

- 100 M			-		
ChPt(H2NCH2CH2NH2)2	73.0	YMK78	Ph-WO.	200.4	MCCOD
Cl-Pt(cvclooctadien)	73.9	CMHL77	PhNbO.	309.4	NPS82
K-PtCk	318.1	EPCC75	PhT2O	309.2	NPS82
		di coro	PhVO.	309.5	NFS82
Pt MNN			KIIVO4	309.2	NFS82
D	1060.7	Wear 79	K3KICI6	309.8	SNMK78
D	2041.1	Wagn78	K3KHP6	312.2	Nefe78
rt.	2041.1	wagn/8	K3KD(NO2)6	310.5	SNMK78
D1-2.1			K ₃ Kn(NO ₃) ₆	311.1	SNMK78
KD 50			Rn(NH ₃) ₆ Cl ₃	310.5	Nefe78
Rb	111.5	Φ	Rh(NO)6Cl3	309.8	Nefe78
RbCl	109.9	Φ	CIKh(Ph ₃ P) ₃	307.4	CWH82, Nefe78, OIIT79
RbN ₃	109.8	SGRS72	Cl ₃ Rh(Ph ₃ P) ₃	309.7	CWH82
RbI	110.4	MVS 73	Cl ₆ Rh(Ph ₃ P) ₃	309.7	Nefe78
RbBr	110.0	MVS 73	Br ₆ Rh(Ph ₃ P) ₃	307.9	Nefe78
RbC1	109.9	MVS 73	NORh(Ph ₃ P) ₃	* 308.2	Nefe78
RbF	109.8	MVS 73	Cl ₃ Rh(Ph ₃ P) ₂ MeCN	309.6	GIWa79
Rb ₃ PO ₄	110.0	MVS 73	H(CO)Rh(Ph ₃ P) ₂	308.5	OIIT79
Rb4P2O7	110.0	MVS 73	Cl(CO) ₂ Rh(Ph ₃ P)	308.7	Nefe78
RbClO ₄	110.4	MVS73	Cl(CO)Rh(Ph ₃ P) ₂	308.6	CWH82, OIIT79
			Cl ₂ Rh ₂ (cyclooctadi) ₂	308.7	CMHL77, CWH82
Re 4f		1	Rh2(OAc)4 · 2H2O	309.0	Nefe78
Re	40.3	Φ	Rh(NH2CH2COO)3 · H2O	310.3	NPBS74
Re	40.5	FHR80			
Re	40.5	SSHU83 WRDM79	Ru 3d		
Re	41.0	BHU81	Ru	280.1	Φ
ReOn	43.6	BHU81	Ru	280.0	Ny Ma80
ReOn	46.8	BHU81	Ru	280.1	Folk73 BHHK70 KiWi74
K ₂ ReCk	44.2	CoHe72 LeBr72		200.1	FEMV77 WPDM70
ChReO(Ph_Ph	43.9	Folk73 Nefe78	RuCh	2818	Folk73
ClaReN(PhaPha	42.7	Nefe78	RuOa	280.7	SaDago Kiwi74 Macino
CliRe/FtaPa	433	LeBr72	RuOn	282.5	SaRaoo, KI W1/4, MC0182
ClaRe(PMe_Ph)	43.6	LeBr72	RuO	283.3	KIW574
ClaRe(PMeaPh)a mer	41.8	LaBr72	Ru(NHa)eNaLa	282.2	Eoll-72
ClaRe(PMeaPh), trans	40.5	LeBr72	Ru(NH ₂) _s N ₂ R ₂	280.5	Folk73
CIReN.(PMe.Ph), trans	40.3	LeDi72 LaD-72 Eall-72	Ru(NH ₃) ₅ N ₂ Cl ₂	280.5	FOIK/3 E-11-72
Circing(1 mogi ii)4, it ans	40.5	Lebi72, POIK75	Cl-Ru(PhPMea)a mer	202.5	FOIK/S
Rh 3d			Cistan in Megis net	270.0	LCDI/2
Rh	307.2	Φ	S 2n		
Rh	307.2	WyMa90	94-0	164.0	A
Ph	307.2	OUT70 WDDM70 EUDW72	5 9	164.0	QUIDERS NUMERALIZO
Phi	308.6	Nofe79	5	104.1	SNK576, WKDM/9,
DhCl.	310.1	OUT70	Bas	160.1	RIVERS, LHJG/0
PhCh . 2H.O	210.0	Chilles	CdS	100.1	SIW080
DICL 100	310.0	CWH52	Cas	101.7	BSKK81
RICI3 · 12h2U	208.8	CMHL//	0.5	162.0	Limosi
RigO3	208.0	NFS82, CMHL//	Cus	101.3	BSKK81
Rin2O3	308.2	UII1/9	Cus	162.4	NSSP80
DaKin2O4	208.9	NFS82	Cus	162.0	Limo81, NSSP80
BeKh2O4	308.9	NFS82	Cus	161.3	BSRR81
CaRh ₂ O ₄	308.8	NFS82	Fes	161.6	Bind73, Limo81
CoKn ₂ O ₄	308.8	NFS82	res ₂	162.9	Bind73, Limo81
POKn ₂ O ₄	308.6	NFS82	Ga ₂ S ₃	162.2	TIWB72
KRhO ₂	308.5	NFS82	Ges	161.8	SFS77
LiRhO ₂	308.9	NFS82	GeS ₂	161.7	HKMP74
ZnRh ₂ O ₄	308.7	NFS82	HgS	162.0	NSSP80
Rh ₂ MoO ₆	309.2	NFS82	MinS	162.5	Limo81

Perkin-Elmer Corporation Physical Electronics Division

				1		
MoS ₂	162.5	SSOT81, StEd75, PCLH76		Thiophene	164.3	LHJG70
Na ₂ S	160.6	SWH71		Ph ₃ PS	162.4	FIWe75, MSAV71
Na ₂ S	161.8	LHJG70		Ph ₃ PS	161.8	HVV79
NiS	162.2	ShRe79, NgHe76, DPS77		Ph ₃ AsS	161.7	HVV79
PbS	160.8	SFS77		PhSSPh	164.4	RiVe83, LHIG70
Sb ₂ S ₃	161.8	BCH75		PhCH ₂ SSCH ₂ Ph	164.2	RiVe83
SnS	161.1	SFS77		(PhS) _b P	163.6	MSAV71
US	161.5	SNRS76		(PhS) _b PS	163.5	MSAV71
US	162.6	SNRS76		RuSSRu	164.1	D:V/022
WSa	162.1	NgHe76		MessMe	164.3	D;Ve22
WSa	163.0	Wagn75		NH-CSNH-	162.1	LoBo77 NDMO72 C-W-77
7.5	164.0	Limo 81		2 Mamantahangimidan	162.1	LCKa/7, INDIMO75, STWa77
GeSTeAs	161.5	HEMD7A		2-Mercaptobenzimidaz	162.2	115/9
CoS. As	161.6	HEMD7A		2-intercaptobenzimidaz	102.8	ChHa/9
VE-C	161.6	DIMP/4		BuiNH3HSO4	167.3	EvKe81
NFCO2	101.0	Bind / 5		Bu4NHSO4	168.0	EvRe81
Na ₂ (5*50 ₃)	102.5	Wagn /S		Et ₃ NHHSO ₄	168.5	EvRe81
Na ₂ (S*SO ₃)	161.7	LHJG70		PhSCMe ₃	162.4	PiLu72
Na ₂ (SS*O ₃)	167.7	LHJG70		Tetrathionaphthalene	164.4	RiVe83
K ₂ SO ₃	167.5	TMR80		Cysteine	163.2	LIMa79, LHJG70
Na ₂ SO ₃	165.6	SWH71		Cysteine HCl hydrate	163.1	SSEW79
Na ₂ SO ₃	166.6	WaTa82, LHJG70		Cysteine HCl hydrate	163.6	LHJG70
Na ₂ SO ₃	167.2	TMR80		Methionine	162.8	BBFR77
Ag ₂ SO ₄	168.6	TMR80		NH2C6H4SO33H	167.8	HaSh73
Al ₂ (SO ₄) ₃	168.8	LHJG70		(MeOS) ₂	164.5	LHJG70
BaSO ₄	168.8	SiWo80, CLSW83		Me ₂ SO	166.5	LHIG70
CaSO ₄	169.0	CLSW83	1	(PhCH ₂) ₂ SO	165.9	LHIG70
CoSO ₄	169.7	Limo81		Ph ₂ SO	166.0	LHIG70
CuSO ₄	169.3	WaTa80, NSSP80, Limo81		MeaSO2	169.0	LHIG70
FeSO4	168.8	Limo81 LHIG70		CH-OS(O)OCH-	168.4	LHIG70
Fea(SO ₄)a	169.1	LHIG70		MeSO-CI	160.3	LHIG70
KaSO	169.1	TMR80		CIC-H-CH-SO-CI	169.5	LHIG70
MnSO	171.0	Limo81		PhSO-Na	166.3	111070
NasSO	168.8	TMP 80		n NH-CH SO CH NH	167.0	LHIG70
NiSO.	160.0	Limo81 NEL C77		p-1012C614502C61410H2-	107.9	LHJG70 -
14504	109.2	Materia ShD-70		p-INH2C6H45O2INH2	108.4	LHJG/0
DLCO	169.6	NGCD00	1 a	p-CH3C6H4SO2CI	168.4	LHJG70
P0504	108.0	NSSP80		p-NH ₂ C ₆ H ₄ SO ₃ Na	168.1	LHJG70
51504	109.1	CLSW85		p-O ₂ NC ₆ H ₄ SNa	161.0	LHJG70
$U(SO_4)_2$	169.1	Chad73		CO ₂ NC ₆ H ₄ SH	163.5	LHJG70
ZnSO ₄	169.5	Nete82		0-O2NC6H4SH	163.9	LHJG70
NO ₂ SO ₃	166.8	BCM78		p-O ₂ NC ₆ H ₄ SMe	163.5	LHJG70
S_2N_2	164.6	SDIO77		0-O2NC6H4SNH2	164.1	LHJG70
SF ₆	174.4	WaTa82		0-O2NC6H4SC1	163.9	LHJG70
SF ₆	177.2	LHJG70		p-O2NC6H4SO2F	169.6	LHJG70
SO ₂	167.4	WaTa82		0-O2NC6H4SO2F	170.0	LHJG70
SO ₂	168.1	LHJG70		PhCH ₂ SSCH ₂ Ph	163.6	LHJG70
SOCI ₂	168.1	LHJG70		PhCH ₂ S*SOCH ₂ Ph	163.7	LHJG70
SOF ₂	170.0	LHJG70		PhCH ₂ SS*OCH ₂ Ph	165.9	LHJG70
SP(NH ₃) ₃	162.3	FIWe75		PhCH ₂ S*SO ₂ CH ₂ Ph	163.9	LHIG70
SPCl ₃	163.7	FIWe75		PhCH ₂ SS*O ₂ CH ₂ Ph	168.0	I HIG70
S ₂ Cl ₂	163,5	LHJG70		(CHa)aS+I-	165.8	LHIG70
S2Cl10	174.4	LHJG70		(CH ₂) ₂ S+(O)I ₂	168.2	LHIG70
CS ₂	163.7	LHIG70		(HOOCCH)-STCH-COO	166.2	LHIC70
(CH-COOH)-S	163.7	LHIG70		hisseenthatenicoo-	100.2	LINGIO
(CH2Ph)2S	163 3	LHIG70		SKII		
PhSH	163.1	LHIG70		S ALL	0116.	NU 00 00
PhaS	163.0	LHIC70		NIS NUM C	2116.1	WaTa80
1 1120	105.2	Lindio		NIW ₂ S	2115.9	Wagn78

WS ₂	2115.6	Wagn78	Sc 2n		
Na ₂ SO ₃	2108.5	WaTa82	Sc	308.6	*
Na ₂ (SS*O ₃)	2107.8	Wagn75	Secon	390.0	•
Na ₂ (S*SO ₃)	2112.5	Wagn75	50203 Sc	401.0	Φ
CuSO ₄	2108.0	WaTa80	ScN	390.7	SMKM//
SO ₂	2106.2	WaTa82	Ser	400.7	STAB/6
SF6	2100.5	WaTa82	CISe(CH)	401.9	NGDS75,WRDM79
0.0	010010	nuluo2		401.4	WeMe78
Sb 3ds/2			$SC(C_5H_5)(C_8H_8)$	400.2	WeMe78
Sb	528.3	Φ	Se 3d		
Sh	528.2	HSRS81 MSV 73 PVVA70	Se Su		
00	0 2010 20	SES77 WDDM70 Wagn75	Se	55.6	Φ
AlSh	5286	MSV73	Se	55.5	SFS77, BWI80, UeOd82,
SheeShe	528.0	HSRSEI	<u> </u>		WRDM79, WSP77, MTHB71
Sh.S.	520.5	MSV72 Wage75	Se	55.1	BWI80
Sh.S.	520.2	MSV73 Waga75	As ₂ Se ₃	55.1	UeOd82, WSP77
Shi	530 /	MSV73, wagn73	Ga ₂ Se ₃	.54.6	IT182, TIWB72
ShCl	530.9	DCU75	Gese	54.8	SFS77
SUCIS SKE	5217	BCH/5	GeSe ₂	54.5	UeOd82
SUL3	520.0	MSV73	CuInSe ₂	54.0	KJID81
302O3	530.0	MSV73,wagn75	In ₂ Se ₃	54.8	KJID81
S02O5	530.8	MSV/3	Nb ₃ Se ₄	54.9	Bahl75
R03S02BF9	529.9	Tric/4	NbSe ₂	53.7	Bahl75
K03S0219	529.9	Inc/4	PbSe	53.4	SFS77
CS3SD219	529.2	BCH/S	PbSe	54.1	WSP7
CS3SD2Br9	530.0	BCH75,Tric74	SnSe	53.7	SFS77
CS3Sb2Cl9	529.3	BCH75	SnSe	55.0	WSP77
Cs ₃ Sb ₂ Cl ₉	530.5	Tric74	MoSe ₂	54.6	BW179
C ₃ SbCl ₆	530.9	Tric74	FeSe ₂	54.9	BW179
Co(NH ₃) ₆ SbBr ₆	530.1	Tric74	SeO ₂	58.9	BW181, IT182
Co(NH ₃) ₆ SbCl ₆	530.8	Tric74	SeO ₂	59.8	MTHB71, WSP77
KSbF ₆	532.3	MSV73	H ₂ SeO ₃	59.2	BWI81
KSbF ₆	532.9	Wagn75	H ₂ SeO ₃	59.9	MTHB71
NaSbF ₆	532.1	BCH75	H ₂ SeO ₄	61.2	BWI81
CsSbF ₄	530.6	BCH75	Na ₂ SeO ₃	59.1	WSP77
KSb ₂ F ₇	531.2	Tric74	 Na₂SeO₄ 	61.6	WSP77
K ₂ SbF ₅	531.0	Tric74	Na2SeS4O6	56.9	WSP77
Na ₂ SbF ₅	531.3	Tric74	Ph ₂ Se	55.8	BWI81
BuNH ₃ SbL ₄	529.6	BCH75	(BrC6H4))Se	56.4	MTHB71
BuNH ₃ Sb ₂ I ₉	529.9	BCH75	Ph ₂ Se ₂	55.8	BWI81
Et4NSbF6	532.4	BCH75	(BrC6H4)2Se2	56.0	BWI81
Ph ₃ Sb	528.9	BCH75	(CidH2sSe)2	561	MTHR71
Bu ₃ Sb	528.1	BCH75	I_SePh2	58.1	BWI81
Ph ₃ SbBr ₂	529.8	BCH75	BraSePha	57.8	BWIS1
Me ₃ SbBr ₂	530.3	BCH75	CloSePha	57.7	BWIRT
Ph ₃ SbS	528.7	BCH75	ClaSePha	58.8	MTHP71
(C12H25)3SSb	529.8	MSV73	CuHaseCN	57.7	MTUD71
Ph ₄ PSbCl ₆	531.7	MSV73	HSePhaP	54.5	NSWM0
			SePh-P	54.2	NO W M100
Sb MNN			Ph-SeO	576	DW(0)
Sb	464.1	WRDM79, PVVA79 Wagn75	(PhCHa)aSeO	58.2	DW101 MTUD71
Sb ₂ S ₃	462.1	Wagn75	(RrC.H.)-SoO	58 4	MTUD71
Sb ₂ S ₅	462.2	Wagn75	(C.H.COOH)-SeO	59.5	MTHD71
Sb ₂ O ₃	462.1	Wagn75	PhSeO(OU)	50.5	
KSbFs	454.4	Wagn75	CIC-H-S-O(OH)	50.0	MTHD71
	10111	in Burs	CiC6n4SeO(On)	39.3	MIHB/I

Perkin-Elmer Corporation Physical Electronics Division

)

FC6H4SeO(OH)	59.3	MTHB71		Hydroxysodalite	101.7	WPHK82
ClC6H4SeO2(OH)	60.2	MTHB71		Kaolinite	102.7	Barr83
(MeOC ₆ H ₄) ₂ SeO ₂	60.0	MTHB71		Kaolinite	103.0	WPHK82
(HOC ₂ H ₄ S) ₂ Se	56.2	WSP77		Mica, Muscovite	102.4	WPHK82
				Natrolite	102.2	WPHK82
Se LMM				Pyrophyllite	102.9	WPHK82
Se	1307.0	BWI81		AlSiO ₅ , sillimanite	102.7	WPHK82
Se	1306.7	Wagn75		LiAlSi ₂ O ₆ , spodumene	102.5	WPHK82
SeO	1301.4	BWI81		Talc, Mg3Si4O10(OH)	103.1	WPHK82
HaSeOn	1300.8	BWI81		Wollastonii Ca ₃ Si ₃ O ₉	102.4	WPHK82
HaSeOa	1297.9	BW181		Mol Sieve A	101.4	WPHK 82
NasSeOa	1301.2	Wagn75		Mol Sieve A	101.3	Barr83
PhaSe	1304.0	BWI81		Mol Sieve A. Ca form	101.8	Barr83
PhySen	1304.3	BWISI		Mol Sieve X	102.2	WPHK 82
LSePh	1302.1	RWISI		Mol Sieve X	102.2	Parr\$3
ClaSePha	1302.0	RWI81		Mol Sieve X Ca form	102.2	Darros Darros
Dh-SeO	1301.0	BW101		Mol Sieve V	102.8	WDUV 00
1 1/2000	1501.7	10 10 10 1		Mol Sieve Y	102.8	WFIIK04
Ci 2n				Mol Sieve V Ca form	102.8	Darros Darros
Si 2p	00.2			Wor Sieve 1, Ca form	102.6	Dantos Malerza
51	99.3	Φ		No SE	104.0	NIO Va / 5
SIO ₂	103.3	φ		Mathabil (linear)	104.5	NSLS//
Si	99.5	AWL80, PADS78	, WRDM79,	p-Methylsii. (intear)	102.4	WPHK82
01	00.0	WPHK82, Tayl81	, KBHN74	p-Memyisii. (resin)	102.9	WPHK82
Si, p-type	99.0	HBBK72		p-Prienyisii. (resin)	-102.7	WPHK82
Si, n-type	100.0	HBBK72	5. 2	Me4Si	100.5	GCH76
Si, (100)	99.7	TLR78		Ph4Si	100.7	MoVa73
Fe ₃ Si	99.5	ShTr75		Ph4Si	101.2	GCH76
MoSi ₂	99.6	WPHK82		Et ₃ StH	100.7	GCH76
MoSi ₂	99.1	BrWh78	10	Et ₃ SiOH	101.1	GCH76
Ni ₂ Si	98.9	GGM82		Et ₃ SiBr	101.0	GCH76
NiSi	98.8	GGM82		Et ₃ SiCl	101.4	GCH76
NiSi	98.4	AWL80		Et ₃ SiF	101.8	GCH76
Pd ₂ Si	99.7	GGM82		Et ₂ SiCl ₂	102.1	GCH76
Pd ₃ Si	99.6	AWL80		EtSiCl ₃	102.9	GCH76
PdSi	99.8	WaTa80	*	(CH ₂ =CH) ₄ Si	100.7	GCH76
Pt ₂ Si	100.5	GGM82		Me ₃ SiSiMe ₃	100.5	GCH76
PtSi	100.5	GGM82		Me ₃ SiOSiMe ₃	100.9	GCH76
				Ph ₃ SiSiPh ₃	100.7	GCH76
Si ₃ N ₄	101.8	WHMC78, WaTal	80,	Ph ₃ SiOSiPh ₃	101.3	GCH76
		Tayl81, TLR78				
SiS ₂	103.4	MoVa73		Si (KLL)		
SiO ₂	103.6	KBHN74, NGDS	75,	Si	1616.6	WPHK82, CDN 77
		MoVa73, Barr83		MoSi ₂	1617.2	WPHK82
SiO ₂ , Vycor	103.5	WPHK82		PdSi	1617.4	WaTa80
SiO ₂ , quartz	103.7	WPHK82, TLR 7	8	Si ₃ N ₄	1612.6	WaTa80
SiO ₂ , alpha cristobal	103.3	WPHK82		SiO ₂	1608.8	KBHN74
SiO ₂ gel	103.4	WPHK82		SiO ₂ , Vycor	1608.5	WPHK82
Ni2SiO4	102.9	LFWS79		SiO ₂ , quartz	1608.6	WPHK82
NiSiO ₃	103.3	SRD79		SiO ₂ , alpha cristobal	1608.8	WPHK82
Al ₂ SiO ₅ , kyanite	102.8	AnSw74		SiO ₂ gel	1608.3	WPHK82
Al ₂ SiO ₅ , mullite	103.0	AnSw74		NaAlSi ₃ O ₈ , albite	1609.3	WPHK82
Al ₂ SiO ₅ , sillimanite	102.6	AnSw74		H Zeolon	1608.4	WPHK82
NaAlSi ₃ O ₈ , albite	102.6	WPHK82		Hemimorphite	1610.5	WPHK82
Bentonite	102.9	Ban83		Hydroxysodalite	1610.7	WPHK82
H Zeolon	103.3	WPHK82		Kaolinite	1609.0	WPHK82
Zn4Si2O7(OH)2 · 2H2O	102.0	WPHK82		Mica, Muscovite	1609.6	WPHK82

				1997	
Natrolite	1609.6	WPHK82	Ph ₄ Sn	487.1	HWVV74
Pyrophyllite	1609.2	WPHK82	Ph ₃ SnI	486.3	WVV79
AlSiO ₅ , sillimanite	1609.5	WPHK82	Ph ₃ SnI	487.5	HWVV74
LiAlSi2O6, spodumene	1609.6	WPHK82	Ph ₃ SnBr	487.5	HWVV74
Talc, Mg ₃ Si ₄ O ₁₀ (OH) ₂	1608.9	WPHK82	Ph ₃ SnCl	486.3	WVV79
Wollastonii, Ca3Si3O9	1610.0	WPHK82	Ph ₃ SnCl	487.0	MoVa73
Mol Sieve A	1610.1	WPHK82	Ph ₃ SnCl	487.6	HWVV74
Mol Sieve X	1609.4	WPHK82	Ph ₃ SnF	486.2	WVV79
Mol Sieve Y	1608.6	WPHK82	Ph ₃ SnF	487.3	HWVV74
p-Methylsil. (linear)	1609.4	WPHK82	Ph ₃ SnOH	4856	WVV79
p-Methylsil. (resin)	1608.8	WPHK82	Cl ₄ Sn(pyridine) ₂	4873	WVV79
p-Phenylsil. (resin)	1610.0	WPHK82	ChSnEt(pyridine)	487.2	WVV70
			ChSnPh(pyridine)	487.2	WVV79
Sm 3d5/2			MesSnF	4867	WVV79
Sm	1081.1	Φ	MesSnFa	480.7	W/W/70
Sm	1081.2	DKMB76	MessnSO.	407.1	WVV79
SmaOn	10834	WRDM70	Bussio	407.0	WWW20
511203	1005.4	WRDW19	Br. Sp(Et NI)	403.0	W V V 79
Sn 2den			CLSp(Ma,N)	487.0	W V V 79
Sh 505/2	105.0		Clash(Mean)	480.1	GZF73
Sn	485.0	Ψ	C4311(M1623O)2	487.0	GZF/3, WVV/9
Sn	484.9	NyMa80	C- MAINI		
Sn	485.1	SFS77	Sn MINN	\$529d	
Sn	485.0	WRDM79, PVVA79, LAK 77,	Sn	437.4	PVVA79, Wagn75, WRDM79,
		Wagn75, OCH 79	744 354651	11/2012/11	LAK 77
Sn alpha	485.0	Hegd82	, SnS	435.7	Wagn75
Sn beta	484.6	Hegd82, HSBS81	SnO ₂	432.7	LAK77
Ag95Sn5	485.6	HSBS81, Hegd82	NaSnF ₃	430.8	Wagn75
AuSn	485.2	FHPW73	Na ₂ SnO ₃	431.7	Wagn75
AuSn ₄	484.9	FHPW73	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
$Cd_{99} \cdot 5Sn \cdot OO_5$	485.3	Hegd82	Sr 3d		
Cd95Sn5	485.6	Hegd82	Sr	134.3	Φ
In95Sn5	485.2	Hegd82	Sr	134.4	VaVe80
Pb95Sn5	486.4	Hegd82	SrO	135.3	VaVe80
Sb95Sn5	485.2	Hegd82	SrF ₂	133.8	WRDM79
SnTe	485.6	SFS77	· SrCO ₃	133.2	CLSW83
SnSe	485.7	SFS77	SrSO ₄	134.3	CLSW83
SnS	485.6	SFS77	Sr(NO ₃) ₂	134.7	CLSW83
SnBr ₂	486.9	GZF73	SrMoO ₄	133.5	NFS82
SnCl ₂	486.7	WVV79	SrRh ₂ O ₄	133.0	NFS82
SnF ₂	487.0	MoVa73			
SnF ₂	487.0	MoVa73	Ta 4f		
SnO	486.0	ADPS77	Ta	21.9	Φ
SnO	486.9	WVV79, MoVa73	Ta	21.6	VHF82
SnO ₂	486.7	LAK 77, MoVa73, WRDM79,	Ta	21.6	MSC73
		NGDS75, WVV79	Ta	21.9	WRDM79 WaTa80
(NH ₄) ₂ SnCl ₆	486.7	GZF73	TaS	26.6	MSC73
BaSnCl ₄	486.8	WVV79	TaSa	26.7	MSC73
Ba(SnCl ₃) ₂	486.8	WVV79	TaBrs	26.9	MSC73
KSnF ₃	486.7	GZF73	TaCls	27.3	MSC73
K ₂ SnF ₆	487.6	MoVa73	TaE	27.8	MSC73
NaSnF ₃	487.4	Wagn75	TaoOr	267	SaDago MCC 72
Na ₂ SnO ₃	486.2	MoVa73		20.1	NESSO NGD975
Na ₂ SnO ₃	486.7	Wagn75	KTaO.	25.0	MSC73
Na ₂ SnO ₃	487.2	ADPS77	RhTaO	25.9	NECO
Ph ₄ Sn	485.1	WVV79	KaTaFa	20.0	MC72
Ph ₄ Sn	486.3	MoVa73	istrat 1	67.4	MOC/5

Cl2Ta6Cl12(H2O)4 · 4H2O	25.8	BeWa79		Te MNN		
Br6(Ta6Cl12)(Bu4N)2	26.3	BeWa79		Te	492.2	WRDM79
Cl6(Ta6Cl12)(Et4N)2	26.2	BeWa79		TeBra	487.3	BWI78
				TeCh	486.1	BW178
Ta MNN				TeO2	487.1	BW178
Та	1674.8	WaTa80		TeO	485 5	BW178
				Te(OH)	485.1	BW178
Th 4d				(NH4)-TeCle	486.4	BW178
Th	146.0	Ф		Na ₂ TeO ₄	485.5	Waan75
TheOr	148.7	SaRa80		ChTePha	486.3	RW178
Tb()	140.7	SaPag0		BraTePha	486.6	DW178
1002	147.2	SaRabo		La TePha	480.0	DW178
Th 24				LaTeFta	407.0	DW170
TU JU	1242.0	4		PhaTea	487.0	DW170
10	1242.0	Φ C-D-90		BraTePh	486.9	DW170
10203	1241.5	Sakaso		LTaDb	400.0	DW170
1002	1241.4	SaKa80		LTeMe	400.2	DW1/8
				n tolul ToOOU	480.0	BW1/8
Te 3d5/2	1000			p-totyl leoon	480.0	BW1/8
Te	573.1	Φ		DI3 ICDU	480.5	BW1/8
Te	573.0	NyMa80		7P1- 46		
Te	573.0	SFS77		1n 417/2		
Te	573.0	PVVA79, WRDM79,		Th	333.2	Φ
		BWI77, Bahl75		Th	333.2	WRDM79
Te	572.7	SNRS76, SWH71		ThO ₂	334.4	VLDH77
CdTe	572.3	SBB80	1	ThF ₄	336.5	WRDM79
GeTe	572.7	SFS77				
Hgo.sCdo.2Te	572.3	SBB80		Th 4d5/2		
Na ₂ Te	572.2	SWH71		Th	675.3	FBWF74
Nb ₃ Te ₄	572.6	Bahl75		ThO ₂	675.5	VLDH77
NbTe ₄	572.8	Bahl75				
PbTe	572.0	SFS77		Ti 2p		
SnTe	572.3	SFS77		Ti	454.1	Φ
U2Te3	572.9	SNRS76		TiO ₂	458.8	Φ
UTe ₃	573.0	SNRS76		Ti	453.7	ALMP82
ZnTe	572.9	SWH71		Ti	453.9	LANM81
TeL4	575.8	BWI77		Ti	453,9	NSCP74, WRDM79
TeBr ₂	576.7	BWI77		TiB ₂	454.4	MECC73
TeCla	576.9	BWI77		TiN	455.8	STAB76
TeO ₂	575.7	GBP81, SBB80		TiCk	458.5	MRV83
TeO ₃	576.6	SWH71		TiO	455.1	SPB76a
Te(OH)6	577.1	BWI77		TiO ₂	458.7	NSCP74 SPB76a
(NH4)2TeCl6	576.9	BWI77			0.00000	WRDM79_NGDS75
(NH ₄) ₂ TeO ₄	576.5	SWH71		TiO ₂ (anatase, rutile)	459.2	MW175
K2TeO3	575.5	SWH71		BaTiO ₃ (cubic, tetra.)	458.5	MWI75
Na ₂ TeO ₄	576.8	Wagn75		CaTiO ₃	458.9	MWI75
Cl ₂ TePh ₂	576.2	BWI77		PbTiO ₃	458.6	MWI75
Br2TePh2	576.2	BWI77		SrTiO ₃	458.8	MWI75
I ₂ TePh ₂	575.4	BWI77		ClaTi(CeHe)	457 1	GSM174
InTeEta	575.3	BWI77		CITI(Celle)	455.8	GSM174
Ph2Te2	573.9	BWI77		Ti(CeHe)(CaHa)	455.4	GSM174
BraTePh	576.6	BWI77		" openational	7676747	USAD PT
hTePh	575.8	BWI77		Ti LMM		
bTeMe2	575.6	BW177		15	410.1	WDDM70
p-toly]TeOOH	576.1	BWI77		11	419.1	WKDM/9
BraTeBu	576.6	BWI77				
35-74-117-5-15-1	0.000	A				

ł

7		1		-	Appendix D.	Chemical States Tables
				1		
TI AF			N.A.	1		
- T1	1177	A	v 2p		1202-04	
TI	117.7	WDN80 WDDN70	V		512.2	Φ
TU	117.0	MBN80, WKDM79	V205		517.4	Φ
TIDe	110.3	MSC73	· V		512.1	LANM81
TIO	119.2	MSC/3	V		512.3	WRDM79, NSCP74
THE	119.0	MSC/3	V		512.9	KKL83
TIC	119.2	MSC73	V		513.4	SMKM77
1125	118./	MSC/3	V		512.4	RoRo76, LFS 73, FrSa75
11253	118.7	MSC73	VB ₂		513,2	MECC73
11 ₂ O ₃	117.5	MSC73	VN		514.4	RoRo76, STAB76
Cl ₃ TI(pyridine) ₂	118.5	Walt77	V_2O_3		515.7	CGR78
Cl ₆ Tl ₂ (PhPEt ₂) ₅	117.9	Walt77	VO ₂		516.3	KKL83
			V ₂ O ₅		517.6	NSLS77, NSCP74, WRDM79,
Tm 4d						NGDS75, NFS82
Tm	175.4	Φ	VOCl ₂		516.4	LFS73
			VOSO ₄		515.9	LFS73
U 4f7/2			Cs ₃ VO ₄		516.9	NFS82
U	377.3	Φ	Rb ₃ VO ₄		516.9	NFS82
U	377.2	VRPC74, Chad73, WRDM79	Na ₃ VO ₄		517.3	NFS82
U ₂ Te ₃	380.5	SNRS76	Li ₃ VO ₄		517.5	NFS82
UTex	381.3	SNRS76	Rh ₃ VO ₄		516.9	NFS82
USe	380.3	SNRS76	K4V(CN)6		513.3	Vann76
USea	379.1	SNRS76	V(acac)		514.2	I ES73
US	380.1	SNRS76	VO(acac)		515.1	L FS73
US	379.4	SNR576	CIV(CsHs)		513.8	GSMI74
LIBry	378.4	TRVI 82	V(CeHe)		512.0	GSMI74 PCDU72
UBr	370.9	TBVL82	V(C ₄ H ₄)(C ₅ H ₅)		513.3	CSM174, DCDE175
UCh	3783	TRVI 82	((c)11)(C)11))		515.5	03MD/4
LICL	380.2	TDVL02	VIMM			
UCL	381.0	TDVLOZ	V LIMIN		170.0	THE DI CO.
LIE.	380.1	TDVL02	VO		472.0	WRDM79
UE.	202.2	TDVL02	VO2		408.0	KKL83
UE.	282.7	IDVL02 Chad72	¥205		468.0	KKL83
UE.	282.6	TDVI 90	XV AP			
10.	362.0	IDVL62 VDDC74 CL-172 MCCC01	W 41			
11-0-	380.0	VKPC/4, Chad / 3, MSSS81	W		31.4	Φ
11.0	301.0	Chad/5, ChGr/2	W		31.4	VHE82
0409	2017	H01R/9	W		31.4	WRDM79, CoRa76, CGR 78,
UOB-	301.7	MSSS81, Chad73, ChGr72			425555	BiPo73, NSLS77
LIOP	300.1	TBVL82	WC		31.5	CoRa76
UOCI	300.4	TBVL82	WC		32.2	MSC73
UOCI	380.0	IBVL82	WS ₂		33.2	Wagn75
UOCI2	360.5	IBVL82	WBr ₅		36.3	MSC73
UO2BI	380.5	TBVL82	WBr ₆		35.9	MSC73
UO2BI2	381.1	TBVL82	WCl ₆		36.9	MSC73
	381.0	TBVL82	WOC14		37.2	MSC73
U(2C2)	382.9	IBVL82,Chad/3	WO ₂		32.8	CGR78, CoRa76, NgHe76
U(304)2	0.186	Chad/3	W18O49		34.3	BiPo73
UU2(NU3)2 · 0H2U	382.0	Chad/3	WO ₃		35.8	SaRa80, CoRa76, CGR 78,
U(acac) ₄	3/9.1	Chad/3				BiPo73, KMH 78
002(ACO)2 · 2H2O	381.0	Chad/3	WO ₃		35.8	NFS82, NGDS75
Ca004	380.7	Chad/3	Al ₂ (WO ₄) ₃		36.1	BiPo73
L12004 .	381.4	Chad73	CaWO ₄		35.0	Nefe82, NFS 82
K2016	382.4	PMDS77	H ₂ WO ₄		35.3	CGR78
			H_2WO_4		36.2	BiPo73
			K_2WO_4		36.0	NFS82

Perkin-Elmer Corporation Physical Electronics Division

1.11

Appendix B. Chemical States Tables

				ŧ		
				ł.		
Li ₂ WO ₄	36.0		NFS 82, MSC 73	Zn ₃ P ₂	1020.6	NSDU75
Na ₂ WO ₄	36.3		Wagn75	ZnP ₂	1020.9	NSDU75
Na _{0.6} WO ₃	35.8		BiPo73	ZnI ₂	1023.0	GaWi77, SATD73
Na _{0.1} WO ₃	35.6		BiPo73	ZnBr ₂	1023.4	Wagn75, SATD73
NiWO ₄	35.4		NgHe76	ZnCl ₂	1021.9	KIHe83
Rh ₂ WO ₆	35.6		NFS82	ZnCl ₂	1023.1	SATD73
(NH ₄) ₆ W ₇ O ₂₄ · 4H ₂ O	36.3		BiPo73	ZnF ₂	1022.2	GaWi77
K ₂ WCl ₆	34.9		LeBr72	ZnF ₂	1022.8	Wagn75
Cl ₄ W(Et ₃ P) ₂	34.6		LeBr72	ZnO	1021.8	Scho73a, WRDM79
Cl ₃ SnW(CO) ₃ (C ₅ H ₅)	32.4		WWVV77	ZnO	1022.5	GaWi77
Ph ₃ PW(CO) ₅	31.6		HVV79	Zn(acac) ₂	1021.4	Wagn75
				(Me ₄ N) ₂ ZnBr ₄	1020.9	EMGK74
Xe 3d5/2				ZnSO ₄	1023.1	Nefe82
Xe in graphite	669.7		Φ	Zn ₄ Si ₂ O ₇ (OH) ₂ · 2H ₂ O	1022.0	WPHK82
Xe in Ag	669.6		CiHa74	ZnCr ₂ O ₄	1022.1	BDFP81
Xe in Au	668.9		CiHa74	ZnRh ₂ O ₄	1021.7	NFS82
Xe in Cu	669.6		CiHa74			10.002
Xe in Fe	670.2		Wagn75	Zn LMM		
Xe in graphite	669.7		WRDM79	Zn	002.1	CoW577 VI MD74 MoDer77
Na XeOc	674.1		Wagn77	Zai	332.1	Cawii/7, KLMP74, MaDu/7,
Na4ACO6	074.1		Wagn//	7.	002.1	SCHO75a, KPWL75, KIPE85
V. MAINI				Cu Zu	992.1	WKDM19, wagn15
Ae MINN	5110		We - 75	Cu64Z1136	992.7	vanO//
Xe in Fe	544.8		Wagn/5	Zh5	989.7	GaW1/7
Xe in graphite	545.2		WRDM79	Znl ₂	988.7	GaWi//
Na ₄ XeO ₆	541.4		Wagn77	ZnBr ₂	987.3	Wagn75
52-2-3Y		+1		ZnCl ₂	989.4	KIHe83
Y 3d				ZnF2	986.2	GaWi77
Y	156.0	-	Φ	ZnF ₂	986.7	Wagn75
Y	155.8		NyMa80	ZnO	988.5	Scho73a
Y ₂ O ₃	156.8		WRDM79, NGDS75	ZnO	987.7	GaWi77
				ZnO	988.2	KlHe83
Yb 4d				Zn(acac) ₂	987.7	Wagn75
Yb	182.4		Φ	$Zn_4Si_2O_7(OH)_2 \cdot 2H_2O$	987.3	WPHK82
Yb	181.3		HHL70, KEML74			
Yb	182.7		LPWF75	Zr 3d		
Yb ₂ O ₃	185.4		HHL70	Zr -	178.9	Φ
			.*	Zr	178.8	NyMa80
Zn 2n3/2				Zr	178.3	NSCP74
7n	1021.8		Φ	Zr	178.9	WRDM79
Zn	1021.9		LANM81 LKMP73	ZrO ₂	182.2	SaRa80, NGDS75, NSCP74
Zn	1021.8		GaWi77 KI MP74 MaDu77	ZrFs	185.3	NKBP73
soft.	100110		Scho73a KPML73 KIHe83	K ₂ ZrF ₆	184.2	NKBP73
Zn	1021.8		WRDM79 Wagn75 SMKM77	K ₃ ZrF ₇	183.7	NKBP73
Cuci7nx	1021.6		VanO77	KZrF5 · H2O	184.7	NKBP73
ZnS	1021.0		GaWi77	Br2Zr(OH)2CH3CHNH2C	182.9	KNPP74
400	1022.0		Swifti i	Cl ₂ Zr(OH) ₂ CH ₃ CHNH ₂ C	183.0	KNPP74

W

Appendix C. Chemical States Tables References

Note: The references in the Chemical States Tables are made with three or four letters which represent the authors' initials. Three or four capital letters indicate three or more authors; alternating upper- and lower-case letters represent two authors (the letters are the first two letters of each last name); and a capital letter followed by three lower case letters indicates a single author. The initials are followed by two digits, which represent the last two digits of the year of publication. This may be followed by a small letter, to distinguish between two otherwise identical reference notations.

ACHT73	Allen, G.C., Curtis, M.T., Hooper, A.J., Tucker, P.M. J. Chem. Soc. Dalton Trans., 1677 (1973).	BWI77	Bahl, M.K. Watson, R.L., Irgolic, K.J., J. Chem. Phys. 66, 5526 (1977).
ADPS77	Ansell, R.O., Dickinson, T., Povey, A.F., Sherwood, P.M.A. J. Electron Spectrosc. Relat. Phenom. 11, 301 (1977).	BWI78	Bahl, M.K. Watson, R.L., Irgolic, K.J., J. Chem. Phys. 68, 3272 (1978).
ALMP82	Anderson, C.R., Lee, R.N., Morar, J.F., and Park, R.L. J. Vac. Sci, Technol. 20, 617 (1982).	BW179 BW180	Bahl, M.K. Watson, R.L., Irgolic, K.J., Phys. Rev. Lett. 42, 165 (1979). Bahl, M.K. Watson, R.L., Irgolic, K.J., J. Chem. Phys. 72, 4069
AMFL74	Armour, A.W., Mitchell, P.C.H., Folkesson, B., Larsson, R. J. Less Common Metals 36, 361 (1974).	BWI81	(1980). Bahl, M.K. Watson, R.L., Irgolic, K.J., cf (se3d-L3) WGR, Anal.
AWL80	Atzrodt, V., Wirth, T., Lange, H. Phys. Status Solidi A 62, 531 (1980).		Chem. 51, 466 (1979).
AT76	Allen, G.C., Tucker, P.M. Inorg. Chim. Acta 16, 41 (1976).	BWW176	Bahl, M.K. Woodall, R.O., Watson, R.L., Irgolic, K.J., J. Chem. Phys.
AL77	Andersson, C., Larsson, R. Chem. Scr. 11, 140 (1977).		64, 1210 (1976).
AnSw74	Anderson, P.R., Swartz, W.E. Inorg. Chem. 13, 2293 (1974).	BaSt75	Barrie, A. Street, F.J., J. Electron Spectrosc. Relat. Phenom. 7, 1
Aoki76	Aoki, A. Jpn. J. Appl. Phys. 15, 305 (1976).		(1977).
Asam76	Asami, K. J. Electron Spectrosc. Relat. Phenom. 9, 469 (1976).	Bahl75	Bahl, M.K. J. Phys. Chem. Solids 36, 485 (1975).
BACB75	Bancroft, G.M., Adams, I., Coatsworth, L.L., Bennewitz, C.D., Brown,	Barr83	Barr, T.L. Appl. Surf. Sci. 15, 1 (1983).
	J.D., Westwood, W.D. Anal. Chem. 47, 586 (1975).	BeF180	Bertrand, P.A. Fleischauer, P.D., J. Voc. Sci. Technol. 17, 1309, (1980).
BALS76	Bancroft, G.M., Adams, I., Lampe, H., Sham, T.K. J. Electron	BeWa79	Best, S.A., Walton, R.A. Inorg. Chem. 18, 486 (1979).
	Spectrosc. Relat. Phenom. 9, 191 (1976).	Bert81	Bertrand, P.A., J. Vac. Sci. Technol. 18, 28 (1981).
BBFR77	Best, S.A., Brant, P., Feltham, R.D., Rauchfuss, T.B., Roundhill, D.M.,	BiPo73	Bilden, P., Pott, G.T. J. Catal. 30, 169 (1973).
	Walton, R.A. Inorg. Chem. 16, 1977 (1977).	BiSw80	Bird, R.J., Swift, P. J. Electron Spectrosc. Relat. Phenom. 21, 227
BCDH73	Barber, M., Connor, J.A., Derrick, L.M.R., Hall, M.B., Hillier, I.H. J.		(1980).
	Chemical Soc., 560 (1973).	Bind73	Binder, H. Z. Naturforsch. B 28, 256 (1973).
BCGH72	Barber, M., Connor, J.A., Guest, M.F., Hall, M.B., Hillier, I.N.,	BrFe76	Brant, P., Feltham, R.D. J. Organometal. Chem. C 53, 120 (1976).
	Meredith, W. Discuss. Faraday Soc. 54, 220 (1972).	BrFr74	Brand, P., Freiser, H. Anal. Chem. 46, 1147 (1974).
BCGH73	Barber, M., Connor, J.A., Guest, M.F., Hillier, I.H., Schwarz, M.,	BrMc72	Brinen, J.S., McClure, J.E. Anal. Lett. 5, 737 (1972).
	Stacey, M. J. Chem. Soc. Faraday Trans. II 69, 551 (1973).	BrWh78	Brainard, W.A., Wheeler, D.R. J. Vac. Sci. Technol. 15, 1801 (1978).
BCH75	Birchall, T., Connor, J.A., Hillier, I.H. J. Chem. Soc. Dalton Trans.,	BuBu74	Burger, K., Buvari, A. Inorg. Chim. Acta, 11, 25 (1974).
	2003 (1975).	CAB71	Clark, D.T., Adams, D.B., Briggs, D. J. Chem. Soc. Chem. Commun.,
BCHM72	Barber, M., Connor, J.A., Hillier, I.H., Meredith, W.N.E. J. Electron	+	603 (1971).
	Spectrosc. Relat. Phenom. 1, 110 (1972).	CBA73	Clark, D.T., Briggs, D., Adams, D.B. J. Chem. Soc. Dalton Trans., 169
BCM78	Barbaray, B., Contour, J.P., Mouvier, G. Env. Sci. Technol. 12, 1294	0	(1973).
	(1978).	CBR76	Chuang, T.J., Brundle, C.R., Rice, D.W. Surf. Sci. 59, 413 (1976).
BDFP81	Battistoni, C., Dormann, J.L., Fiorani, D., Paparazzo, E., Viticoli, S. Solid State Commun. 39, 581 (1981).	CDFM82	Capece, F.M., Dicastro, V., Furlani, C., Mattogno, G., Fragale, C., Gar- gano, M., Rossi, M. J. Electron Spectrosc. Relat. Phenom. 27, 119
BGD75	Bonnelle, J.P., Grimblot, J., D'Huysser, A. J. Electron Spectrosc. Relat.		(1982).
	Phenom. 7, 151 (1975).	CDH74	Connor, J.A., Derrick, L.M.R., Hillier, I.H. J. Chem. Soc. Faraday
BHHK70	Baer, Y., Heden, P.F., Hedman, J., Klasson, M., Nordling, C., Siegbahn,		Trans. II 70, 941 (1974).
	K. Phys. Scr. 1, 55 (1970).	CDN77	Carlson, T.A., Dress, W.B., Nyberg, G.L. Phys. Scr. 16, 211 (1977).
BHU81	Broclawik, E., Haber, J., Ungier, L. J. Phys. Chem. Solids 42, 203 (1981).	CELC76	Chatt, J., Elson, C.M., Leigh, G.J., Connor, J.A. J. Chem. Soc. Dalton Trans., 1352 (1976).
BMCK77	Battistoni, C., Mattogno, G., Cariati, F., Kaldini, L., Sgamellotti, A. Inorg. Chim. Acta 24, 207 (1977).	CFRS80	Clark, D.T., Fok, T., Roberts, G.G., Sykes, R.W. Thin Solid Films 70, 261 (1980).
BNMN79	Berndsson, A., Nyholm, R., Martensson, N., Nilsson, R., Hedman, J. Phys. Status Solidi (b) 93, K103 (1979).	CGR78	Colton, R.J., Guzman, A.M., Rabalais, J.W. J. Appl. Phys. 49, 409 (1978).
BNSA70	Blackburn, J.R., Nordberg, C.R., Stevie, F., Albridge, R.G., Jones, M.M. Inorg. Chem. 9, 2374 (1970).	CKAM72	Clark, D.T., Kilcast, D., Adams, D.B., Musgrave, W.K.R. J. Electron Spectrosc. Relat. Phenom. 1, 232 (1972).
BSRR81	Bhide, V.G., Salkalachen, S., Rastogi, A.C., Rao, C.N.R., Hegde, M.S. J. Phys. D 14, 1647 (1981).	CKAM75	Clark, D.T., Kilcast, D., Adams, D.B., Musgrave, W.K.R. J. Electron Spectrosc. Relat. Phenom. 6, 117 (1975).
BTE77	Burger, K. Tschismarov, F., Ebel, H., J. Electron Spectrosc. Relat. Phenom. 10, 461 (1977).	CKM71	Clark, D.T., Kilcast, D., Musgrave, W.K.R. J. Chem. Soc. Chem. Com- mun., 517 (1971).

Appendix C. Chemical States Tables References

- CLSW83 Christie, A.B., Lee, J., Sutherland, I., Walls, J.M. Appl. Surf. Sci. 15, 224 (1983).
- CMHL77 Contour, J.P., Mouvier, G., Hoogewijs, M., LeClere, C. J. Catal. 48, 217 (1977).
- CSC72 Carver, J.C., Schweitzer, G.K., Carlson, T.A. J. Chem. Phys. 57, 973 (1972).
- CSFG79 Contour, J.P., Salesse, A., Froment, M., Garreau, M., Thevenin, J., Warin, D. J. Microsc. Spectrosc. Electron. 4, 483 (1979).
- CWH82 Carvalho, M., Wieserman, L.F., Hercules, D.M. Appl. Spectrosc. 36, 290 (1982).
- CaLe73 Cahen, D., Lester, J.E. Chem. Phys. Lett. 18, 109 (1973).
- ChGr72 Chadwick, D., Graham, J., Nature (London) Phys. Sci., 237, 127 (1972).
- ChHa79 Chadwick, D., Hashemi, T. Surf. Sci. 89, 649 (1979).
- Chad73 Chadwick, D. Chem. Phys. Lett. 21, 293 (1973).
- CiDe75 Cimino, A., De Angelis, B.A. J. Catal. 36, 11 (1975).
- CiHa74 Citrin, P.H., Hamann, D.R. Phys. Rev. B 10, 4948 (1974).
- Citr73 Citrin, P.H., Phys. Rev., B 8, 8 (1973).
- ClAd71 Clark, D.T., Adams, I. J. Chem. Soc. Chem. Commun., 741 (1971).
- ClRi76 Clarke, T.A., Rizkalla, E.N. Chem. Phys. Lett. 37, 523 (1976).
- CITh78 Clark, D.T., Thomas, H.R., J. Polym. Sci.:Polym. Chem. Ed., 16, 791 (1978).
- CoHe72 Cox, L.E., Hercules, D.M. J. Electron Spectrosc. Relat. Phenom. 1, 193 (1972).
- CoRa76 Colton, R.J., Rabalais, J.W. Inorg. Chem. 15, 237 (1976).
- DKMB76 Dufour, G., Karnatak, R.D., Mariot, J.M., Bonnelle, C. Chem. Phys. Lett. 42, 433 (1976).
- DPS76 Dickinson, T., Povey, A.F., Sherwood, P.M.A. J. Chem. Soc. Faraday Trans. 1 72, 686 (1976).
- DPS77 Dickinson, T., Povey, A.F., Sherwood, P.M.A. J. Chem. Soc. Faraday Trans. 1 73, 332 (1977).
- DSBG82 Dharmadhikari, V.S., Sainkar, S.R., Badrinarayan, S., Goswami, A. J. Electron Spectrosc. Relat. Phenom. 25, 181 (1982).
- Dale76 Dale, A.J. Phosphorus 6, 81 (1976).
- EMGK74 Escard, J., Mavel, G., Guerchais, J.E., Kergoat, R. Inorg. Chem. 13, 695 (1974).
- EPC75 Escard, J., Pontvianne, B., Contour, J.P. J. Electron Spectrosc. Relat. Phenom. 6, 17 (1975).
- EPCC75 Escard, J., Pontvianne, B., Chenebaux, M.T., Cosyns, J. Bull. Chim. Soc. Fr., 2400 (1975).
- EvRe81 Everhart, D.S., Reilley, C.N. Surf. Interface Anal. 3, 258 (1981).
- FBWF74 Fuggle, J.C., Burr, A.F., Watson, L.M., Fabian, D.J., Lang, W. J. Phys. F 4, 335 (1974).
- FCFG77 Fontaine, R., Caillat, R., Feve, L., Guittet, M.J. J. Electron Spectrosc. Relat. Phenom. 10, 349 (1977).
- FEMY77 Fisher, G.B., Erikson, N.E., Madey, T.E., Yates, J.T. Surf. Sci. 65, 210 (1977).
- FHPW73 Friedman, R.M., Hudis, J., Perlman, M.L., Watson, R.E. Phys. Rev. B 8, 2434 (1973).
- FHR80 Fukuda, Y., Honda, F., Rabalais, J.W. Surf. Sci. 93, 335 (1980).
- FHT77 Freeland, B.H., Habeeb, J.J., Tuck, D.G. Can. J. Chem. 55, 1528 (1977).
- FKWF77 Fuggle, J.C., Kallne, E., Watson, L.M., Fabian, D.J. Phys. Rev. B16, 750 (1977).

- FMUK77 Franzen, H.F., Merrick, J., Umana, M., Khan, A.S., Peterson, D.T., Mc-Creary, J.R., Thorn, R.J. J. Electron Spectrosc. Relat. Phenom. 11, 439 (1977).
- FSJL83 Folkesson, B., Sundberg, P., Johansson, L., Larsson, R. J. Electron Spectrosc. Relat. Phenom. 32, 248 (1983).
- FWFA75 Fuggle, J.C., Watson, L.M., Fabian, D.J., Affrossman, S. J. Phys. F 5, 375 (1975).
- FWUM79 Fischer, A.B., Wrighton, M.S., Umana, M., Murray, R.W. J. Am. Chem. Soc. 101, 3442 (1979).
- FaBa79 Fahey, D.R., Baldwin, B.A. Inorg. Chim. Acta 36, 269 (1979).
- FIWe75 Fluck, E., Weber, D. Z Anorg. Allg. Chem. 412, 47 (1975).
- FoLa82 Folkesson, B., Larsson, R. J. Electron Spectrosc. Relat. Phenom. 26, 157 (1982).
- Folk73 Folkesson, B. Acta Chem. Scand. 27, 287 (1973).
- FrSa75 Franzen; H.F., Sawatzky, G. J. Solid State Chem. 15, 229 (1975).
- Fugg77 Fuggle, J.C. Surf. Sci. 69, 581 (1977).
- GBMP79 Grimblot, J., Bonnelle, J.P., Mortreux, A., Petit, F. Inorg. Chim. Acta 34, 29 (1979).
- GBP81 Garbassi, F., Bart, J.C.J., Petrini, G. J. Electron Spectrosc. Relat. Phenom. 22, 95 (1981).
- GCH76 Gray, R.C., Carver, J.C., Hercules, D.M. J. Electron Spectrosc. Relat. Phenom. 8, 343 (1976).
- GGM82 Grunthaner, P.J., Grunthaner, F.J., Madhukar, A. J. Vac. Sci., Technol. 20, 680 (1982).
- GGVL79 Grunthaner, F.J., Grunthaner, P.J., Vasquez, R.P., Lewis, B.F., Maserjian, J., Madhukar, A. J. Vac. Sci. Technol. 16, 1443 (1979).
- GHHL70 Gelius, U., Heden, P.F., Hedman, J., Lindberg, B.J., Manne, R., Nordberg, R., Nordling, C., Siegbahn, K. Phys. Scr. 2, 70 (1970).
- GMD79 Gresch, R., Mueller-Warmuth, W., Dutz, H. J. Non-Cryst. Solids 34, 127 (1979).
- GPDG79 Gajardo, P., Pirotte, D., Defosse, C., Grange, P., Delmon, B. J. Electron Spectrosc. Relat. Phenom. 17, 121 (1979).
- GSMJ74 Groenenboom, C.J., Sawatzky, G., Meijer, H.J.D., Jellinek, F. J. Organometal. Chem. C 4, 76 (1974).
- GZF73 Grutsch, P.A., Zeller, M.V., Fehlner, T.P. Inorg. Chem. 12, 1432 (1973).
- GaWi77 Gaarenstroom, S.W., Winograd, N. J. Chem. Phys. 67, 3500 (1977).
- GlWa79 Glicksman, H.D., Walton, R.A. Inorg. Chim Acta 33, 255 (1979).
- GrHe77 Gray, R.C., Hercules, D.M. Inorg. Chem. 16, 1426 (1977).
 GrMa75 Grim, S.O., Matienzo, L.J. Inorg. Chem. 14, 1014 (1975).
- Grim, S.O., Matienzo, L.J. Inorg. Chem. 14, 1014 (1975).
 HAS75 Halder, H.C., Alonso, J., Swartz, W.E., Z. Naturforsch A 30, 1485
- (1975).
- HBBK72 Hedman, J., Baer, Y., Berndtsson, A., Klasson, M., Leonhardt, G., Nilsson, R., Nordling, C. J. Electron Spectrosc. Relat. Phenom. 1, 101 (1972).
- HFV77 Hoogewijs, R., Fiermans, L., Vennik, J. J. Electron Spectrosc. Relat. Phenom. 11, 171 (1977).
- HGW75 Hammond, J.S., Gaarenstroom, S.W., Winograd, N. Anal. Chem. 47, 2194 (1975).
- HHDD81 Hammond, J.S., Holubka, J.W., Devries, J.E., Duckie, R.A. Corros. Sci. 21, 239 (1981).
- HHJ69 Hendrickson, D.N., Hollander, J.M., Jolly, W.L. Inorg. Chem. 8, 2642 (1969).
- HHJ70 Hendrickson, D.N., Hollander, J.M., Jolly, W.L. Inorg. Chem. 9, 612 (1970).
- HHL70 Hagstrom, S.B.M., Heden, P.O., Lofgren, H. Solid State Commun. 8, 1245 (1970).

Appendix C. Chemical States Tables References

HJGN70	Hamrin, K., Johansson, G., Gelius, U., Nordling, C., Siegbahn, K	KJID81	Kazmerski, L.L., Jamjoum, O., Ireland, P.J., Deb, S.K., Mickelsen, R.A., Chen, W. J. Vac. Sci., Technol. 19, 467 (1981).
HKMP74	Hollinger, G., Kumurdjian, P., Mackowski, J.M., Pertosa, P., Porte, L., Duc. Tran Minh J. Electron Spectrosc. Relat. Phenom. 5, 237 (1974).	KKL83	Kasperkiewicz, J., Kovacich, J.A., Lichtman, D. J. Electron Spectrosc. Relat. Phenom. 32, 128 (1983).
HMUZ78	Haber, J., Machej, T., Ungier, L., Ziolkowski, J. J. Solid State Chem. 25, 207 (1978).	KLMP73	Kowalczyk, S.P., Ley, L., McFeely, F.R., Pollak, R.A., Shirley, D.A. Phys. Rev. B 8, 3583 (1973).
HNUW78a	Haycock, D.E., Nicholls, C.J., Urch, D.S., Webber, M.J., Wiech, G. J. Chem. Soc. Dalton Trans., 1791 (1978).	KLMP74	Kowalczyk, S.P., Ley, L., McFeely, F.R., Pollak, R.A., Shirley, D.A. Phys. Rev. B 9, 381 (1974).
HNUW78	Haycock, D.E., Nicholls, C.J., Urch, D.S., Webber, M.J., Wiech, G. J. Chem. Soc. Dalton Trans., 1785 (1978).	KMH78	Kerkhof, F.P.J., Moulijn, J.A., Heeres, A. J. Electron Spectrosc. Relat. Phenom. 14, 453 (1978).
HSBS81	Hegde, R.I., Sainkar, S.R., Badrinarayanan, S., Sinha, A.P.B. J. Electron Spectrosc. Relat. Phenom. 24, 19 (1981).	KNNH68	Karlsson, S.E., Norberg, C.H., Nilsson, O., Hogberg, S., El-Farrash, A.H., Nordling, C., Siegbahn, K. Arkiv Fur Fysik 38, 349 (1968)
HSU76	Haber, J., Stoch, J., Ungier, L. J. Electron Spectrosc. Relat. Phenom. 9, 459 (1976).	KNPP74	Kharitonova, L.C., Nefedov, V.I., Pankratova, L.N., Pershin, V.L. Zh. Neorg, Khim. 19, 860 (1974).
HUGH79	Haycock, D., Urch, D.S., Garner, C.D., Hillier, I.H. J. Electron Spectrosc. Relat. Phenom. 17, 345 (1979).	KOK83	Kohiki, S., Ohmura, T., Kusao, K. J. Electron Spectrosc. Relat. Phenom. 31, 85 (1983).
HVV79	Hoste S. Van De Vondel, D.F. Van Der Kelen, G.P. J. Electron	KOW73	Kim K.S. O'Leary T.J. Winograd N Anal Chem 45 2214 (1973)
11,112	Spectrosc Relat Phenom 17 191 (1979)	KPMI 73	Kowalczyk SP Pollak P & McEaely FP Lay I Shirlay D &
1100/00/24	Hosto S. Willaman H. Van De Vandal D. Van Der Kalan G. P. I.	KI ML/J	Dhue Day D & 2227 (1072)
11111/14	Flosten Spontage Palet Diamon 5 227 (1074)	VCDP76	Variance MC Shulas VM Dakhadawa VI Davidha VC Dhua
11-01-22	Liectron Spectrosc, Reial, Phenom. 5, 227 (1914).	KSFD/0	Kaptulov, M.O., Shuiga, I.M., Poknounya, K.I., Dorouko, I.O. Phys.
HaSh/5	Harker, H., Snerwood, P.M.A. Phil Mag. 21, 1241 (1973).	VTANA	Stat. Soliai 75, 550 (1976).
HaWa74	Hamer, A.D., Walton, K.A. Inorg. Chem. 13, 1440 (1974).	KIWY/0	Kinomura, F., Tamura, T., Watanabe, I., Yokoyama, Y., Ikeda, S. Bull.
HaWi77	Hammond, J.S., Winograd, N. J. Electrochem. Electroanal. Chem. 78,	WIND BA	Chem. Soc. Jpn. 49, 3544 (19/6).
	55 (1977).	KWD/1	Kim, K.S., Winograd, N., Davis, R.E. J. Am. Chem. Soc. 93, 6296
HeMa80	Hedman, J., Martensson, N. Phys. Scr. 22, 176 (1980).		(1971).
Hegd82	Hegde, R.I. Surf. Interface Anal. 4, 205 (1982).	KaEl79	Katrib, A., El-Egaby, M.S. Inorg. Chim. Acta 36, L405 (1979).
HoTh79	Howng, W.Y., Thorn, R.J. Chem. Phys. Lett. 62, 57 (1979).	Kilk73	Kishi, K., Ikeda, S. Bull. Chem. Soc. Jpn. 46, 341 (1973).
HoTh80	Howng, W.Y., Thorn, R.J. J. Chem. Phys. Solids 41, 75 (1980).	KiWi73	Kim, K.S., Winograd, N. Chem. Phys. Lett. 19, 209 (1973).
HuBa74	Hughes, W.B., Baldwin, B.A. Inorg. Chem. 13, 1531 (1974).	KiWi74	Kim, K.S., Winograd, N. J. Catal. 35, 66 (1974).
IIKK76	Ikemoto, I., Ishii, K., Kinoshita, S., Kuroda, H., Franco, M.A.A.,	KiWi75	Kim, K.S., Winograd, N. Chem. Phys. Lett. 30, 91 (1975).
	Thomas, J. J. Solid State Chem. 17, 425 (1976).	Kim75	Kim, K.S. Phys. Rev. B 11, 2177 (1975).
IKIM73	Ihara, H., Kumashiro, Y., Itoh, A., Maeda, K. Jpn. J. Appl. Phys. 12,	KlHe83	Klein, J.C., Hercules, D.M. J. Catal. 82, 424 (1983).
	1462 (1973).	KoNa80	Konno, H., Nagayama, M. J. Electron Spectrosc. Relat. Phenom. 18,
IMNN79	Iwasaki, H., Mizokawa, Y., Nishitani, R., Nakamura, S. Surf. Sci. 86,		341 (1980).
	811 (1979).	LAK77	Lin, A.W.C., Armstrong, N.R., Kuwana, T. Anal. Chem. 49, 1228
ITI82	Iwakuro, H., Tatsuyama, C., Ichimura, S. Jpn. J. Appl. Phys. 21, 94		(1977).
	(1982).	LANM81	Lebugle, A., Axelsson, U., Nyholm, R., Martensson, N. Phys. Scr. 23,
InYa81	Inoue, Y., Yasumori, I. Bull. Chem. Soc. Jpn. 54, 1505 (1981).		825 (1981).
JHBK73	Johansson, G., Hedman, J., Berndtsson, A., Klasson, M., Nilsson, R. J.	LBHK73	Leonhardt, G., Berndtsson, A., Hedman, J., Klasson, M., Nilsson, R.
	Electron Spectrosc, Relat, Phenom, 2, 295 (1973).		Phys. Status Solidi (b) 60, 241 (1973).
KBAM72	Kumar, G., Blackburn, J.R., Albridge, R.G., Moddeman, W.E., Jones,	LBNN78	Lindberg, B., Berndtsson, A., Nilsson, R., Nyholm, R., Exner, O. Acta
	M.M. Inore. Chem. 11, 296 (1972).		Chem. Scand. A 32, 353 (1978).
KBAW74	Kim, K.S., Baitinger, W.E., Amy, J.W., Winograd, N. J. Electron Spectrace Relat Phonon 5, 351 (1974)	LDDB80	Lerebours, B., Duerr, J., D'Huisser, A., Bonnelle, J.P., Leuglet, M. <i>Phys. Status Solidi</i> A 61, K175 (1980)
KRHN74	Klasson M Berndtsson A Hedman I Nilsson R Nyholm R	LERC80	Lasser R Encole IC Beyss M Campagna M Steelich E Hul
KDIII/4	Nordling, C. J. Electron Spectrosc. Relat. Phenom. 3, 427 (1974).	LEDCOV	Lasser, R., Fuggre, J.C., Deyss, M., Campagna, M., Stegnon, F., Hur- liger, F. Physica 102B, 360 (1980).
KDR77	Krishnan, N.G., Delgass, W.N., Robertson, W.D. J. Phys. F 7, 2623	LFS73	Larsson, R., Folkesson, B., Schoen, G. Chem. Scr. 3, 88 (1973).
	(1977).	LFWS79	Lorenz, P., Finster, J., Wendt, G., Salyn, J.V., Zumadilov, E.K.,
KEML74	Kowalczyk, S.P., Edelstein, N., McFeely, F.R., Ley, L., Shirley, D.A.		Nefedov, V. J. Electron Spectrosc. Relat. Phenom. 16, 267 (1979).
	Chem. Phys. Lett. 29, 491 (1974).	LHJG70	Lindberg, B.J., Hamrin, K., Johansson, G., Gelius, V., Fahlmann, A.,
KGW74	Kim, K.S., Gossmann, A.F., Winograd, N. Anal. Chem. 46, 197 (1974).	*	Nordling, C., Siegbahn, K. Phys. Scr. 1, 286 (1970).
KGW76	Kim, K.S., Gaarenstroom, S.W., Winograd, N. Chem. Phys. Lett. 41, 503 (1976).	LKMP73	Ley, L., Kowalczyk, S.P., McFeely, F.R., Pollak, R.A., Shirley, D.A. Phys. Rev. B 8, 2392 (1973).
KISC80	Kazmerski, L.L., Ireland, P.J., Sheldon, P., Chu, T.L., Chu, S.S., Lin,	LMF80	Larsson, R., Malek, A., Folkesson, B. Chem. Scr. 16, 47 (1980).
1000	C. J. Vac. Sci. Technol. 17, 1061 (1980).	LMKJ75	Ley, L., McFeely, F.R., Kowalczyk, S.P., Jenkin, J.G., Shirley, D.A.

Ley, L., McFeely, F.R., Kowalczyk, S.P., Jenkin, J.G., Shirley, D.A. LMKJ75 Phys. Rev. B 11, 600 (1975).

Appendix C. Chemical States Tables References

Handbook of X-ray Photoelectron Spectroscopy

LPGC77	Lindau, I., Pianetta, P., Garner, C.M., Chye, P.E., Gregory, P.E., Spicer,
	W.E. Surf. Sci. 63, 45 (1977).

- LPMK74 Ley, L., Pollak, R.A., McFeely, F.R., Kowalczyk, S.P., Shirley, D.A. *Phys. Rev. B* 9, 600 (1974).
- LPWF75 Lang, W.C., Padalia, B.D., Watson, L.M., Fabian, D.J. J. Electron Spectrosc. Relat. Phenom. 7, 357 (1975).
- LaFo76 Larsson, R., Folkesson, B. Chem. Scr. 9, 148 (1976).
- LaKe76 Lavielle, L., Kessler, H. J. Electron Spectrosc. Relat. Phenom. 8, 95 (1976).
- LaLu79 Larkins, F.P., Lubenfeld, A. J. Electron Spectrosc. Relat. Phenom. 15, 137 (1979).
- LeBr72 Leigh, G.J., Bremser, W. J. Chem. Soc. Dalton Trans., 1217 (1972).
- LeRa77 Lee, T.H., Rabalais, J.W. J. Electron Spectrosc. Relat. Phenom. 11, 112 (1977).
- LiHe75 Lindberg, B.J., Hedman, J. Chem. Scr. 7, 155 (1975).
- Limo81 Limouzin-Maire, Y. Bull. Soc. Chim. Fr. 1, 340 (1981).
- LIMa79 Llopiz, P., Maire, J.C. Bull. Chim. Soc. Fr., 457 (1979).
- MBN80 Martensson, N., Berndtsson, A., Nyholm, R. J. Electron Spectrosc. Relat. Phenom. 19, 299 (1980).
- MECC73 Mavel, G., Escard, J., Costa, P., Castaing, J. Surf. Sci. 35, 109 (1973).
- MIN81 Mizokawa, Y., Iwasaki, H., Nakamura, S. Jpn. J. Appl. Phys. 20, L491 (1981).
- MINN78 Mizokawa, Y., Iwasaki, H., Nishitani, R., Nakamura, S. J. Electron Spectrosc. Relat. Phenom. 14, 129 (1978).
- MKLP73 McFeely, F.R., Kowalczyk, S.P., Ley, L., Pollak, R.A., Shirley, D.A. *Phys. Rev. B* 7, 5228 (1973).
- MMRC72 Mason, R., Mingos, D.M.P., Rucci, G., Connor, J.A. J. Chem. Soc. Datton Trans., 1730 (1972).
- MNTB70 Malmsten, G., Nilsson, O., Thoren, I., Bergmark, J.E. Phys. Scr. 1, 37 (1970).
- MRV83 Mousty-Desbuquoit, C., Riga, J., Verbist, J.J. J. Chem. Phys. 79, 26 (1983).
- MSAV71 Morgan, W.E., Stec, W.J., Albridge, R.G., Van Wazer, J.R. Inorg. Chem. 10, 926 (1971).
- MSC73 McGuire, G.E., Schweitzer, G.K.K., Carlson, T.A. Inorg. Chem. 12, 2451 (1973).
- MSSS81 McIntyre, N.S., Sunder, S., Shoesmith, D.W., Stanchell, F.W. J. Vac. Sci. Technol. 18, 714 (1981).
- MSV73 Morgan, W.E., Stec, W.J., Van Wazer, J.R. Inorg. Chem. 12, 953 (1973).
- MSV79 Maroie, S., Savy, M., Verbist, J.J. Inorg. Chem. 18, 2560 (1979).
- MTHB71 Malmsten, G., Thoren, I., Hogberg, S., Bergmark, J.E., Karlsson, S.E. Phys. Scr. 3, 96 (1971).
- MVS73 Morgan, W.E., Van Wazer, J.R., Stec, W.J. J. Am. Chem. Soc. 95, 751 (1973).
- MWI75 Murata, M., Wakino, K., Ikeda, S. J. Electron Spectrosc. Relat. Phenom. 6, 459 (1975).
- MaDu77 Mariot, J.M., Dufour, G. Chem. Phys. Lett. 50, 219 (1977).
- MaWo75 Matsuura, I., Wolfs, M.W.J. J. Catal. 37, 174 (1975).
- McCo75 McIntyre, N.S., Cook, M.G. Anal. Chem. 47, 2208 (1975).
- McGi82 McEvoy, A.J., Gissler, W. Phys. Status Solidi A 69, K91 (1982).
- McTh76 McCreary, J.R., Thorne, R.J. J. Electron Spectrosc. Relat. Phenom. 8, 425 (1976).
- McWe76 McGilp, J.F., Weightman, P. J. Phys. C 9, 3541 (1977).
- McZe77 McIntyre, N.S., Zetaruk, D.G. Anal. Chem. 49, 1521 (1977).
- MoVa73 Morgan, W.E., Van Wazer, J.R. J. Phys. Chem. 77, 96 (1973).

- MWLF78 Moses, P.R., Wier, L.M., Lennox, J.C., Finklea, H.O., Lenhard, F.R., Murray, R.U. Anal. Chem. 50, 579 (1978).
- NBK74 Nefedov, V.I., Buslaev, Y.A., Kokunov, Y.V. Zh. Neorg. Khim. 19, 1166 (1974).
- NBMO73 Nefedov, V.I., Baranovskii, I.B., Molodkin, A.K., Omuralieva, V.O. Zh. Neorg. Khim. 18, 1295 (1973).
- NFS82 Nefedov, V.I., Firsov, M.N., Shaplygin, I.S. J. Electron Spectrosc. Relat. Phenom. 26, 65 (1982).
- NGDS75 Nefedov, V.I., Gati, D., Dzhurinskii, B.F., Sergushin, N.P., Salyn, Y.V. Zh. Neorg. Khim. 20, 2307 (1975).
- NIMN78 Nishitani, R., Iwasaki, H., Mizokawa, Y., Nakamura, S. Jpn. J. Appl. Phys. 17, 321 (1978).
- NIS72 Nagakura, I., Ishii, T., Sagawa, T. J. Phys. Soc. Japan 33, 758 (1972).
- NKBP73 Nefedov, V.I., Kokunov, Y.V., Buslaev, Y.A., Porai-Koshits, M.A., Gustyakova, M.P., II'ln, E.G. Zh. Neorg. Khim. 18, 931 (1973).
- NMSI74 Nefedov, V.I., Molodkin, A.K., Salyn, Y.V., Ivanova, O.M., Porai-Koshits, M.A., Balakaeva, T.A., Belyakova, Z.V. Zh. Neorg. Khim. 19, 2628 (1974).
- NNBF68 Nilsson, O., Norberg, C.H., Bergmark, J.E., Fahlman, A., Nordling, C., Siegbahn, K. Helv. Phys. Acta 41, 1064 (1968).
- NPBS74 Nefedov, V.I., Prokof'eva, I.V., Bukanova, A.E., Shubochkin, L.K., Salyn, Y.V., Pershin, V.L. Zh. Neorg. Khim. 19, 1578 (1974).
- NSBN77 Nefedov, V.I., Salyn, Y.V., Baronovskii, I.B., Nikolskii, A.B. Zh. Neorg. Khim. 22, 1715 (1977).
- NSCP74 Nefedov, V.I., Salyn, Y.V., Chertkov, A.A., Padurets, L.N. Zh. Neorg, Khim. 19, 1443 (1974).
- NSDU75 Nefedov, V.I., Salyn, Y.V., Domashevskaya, E.P., Ugai, Y.A., Terekhov, V.A. J. Electron Spectrosc. Relat. Phenom. 6, 231 (1975).
- NSLS77 Nefedov, V.I., Salyn, Y.V., Leonhardt, G., Scheibe, R. J. Electron Spectrosc. Relat. Phenom. 10, 121 (1977).
- NSMS79 Nefedov, V.I., Salyn, Y.V., Moiseev, I.I., Sadovskii, A.P., Berenbljum, A.S., Knizhnik, A.G., Mund, S.L. Inorg. Chim. Acta 35, L343 (1979).
- NSSP80 Nefedov, V.I., Salyn, Y.V., Solozhenkin, P.M., Pulatov, G.Y. Surf. Interface Anal. 2, 171 (1980).
- NSWM80 Nefedov, V.I., Salyn, Y.V., Walther, B., Messbauer, B., Schoeps, R. Inorg. Chim. Acta 45, L103 (1980).
- NSWU77 Nefedov, V.I., Salin, J.V., Walther, D., Uhlig, E., Dinjus, E. Z. Chem. 17, 191 (1977).
- NZB78 Nefedov, V.I., Zhumadilov, E.K., Baer, L. Zh. Neorg. Khim 23, 2113 (1978).
- NZK77 Nefedov, V.I., Zhumadilov, A.K., Konitova, T.Y. J. Struct. Chem. USSR 18, 692 (1977).
- NeBa72 Nefedov, V.L., Baranovskii, I.B. Zh. Neorg. Khim. 17, 466 (1972).
- NeSa78 Nefedov, V.I., Salyn, Y.V. Inorg. Chim. Acta 28, L135 (1978).
- Nefe78 Nefedov, V.I. Koord. Khim. 4, 1285 (1978).
- Nefe82 Nefedov, V.I. J. Electron Spectrosc. Relat. Phenom. 25, 29 (1982).
- NgHe76 Ng, K.T., Hercules, D.M. J. Phys. Chem. 80, 2095 (1976).
- NyMa80 Nyholm, R., Martensson, N. J. Phys. C 13, L279 (1980).
- OCH79 Okamoto, Y., Carter, W.J., Hercules, D.M. Appl. Spectrosc. 33, 287 (1979).
- OHI75 Oku, M., Hirokawa, K., Ikeda, S. J. Electron Spectrosc. Relat. Phenom. 7, 465 (1975).
- OIIT79 Okamoto, Y., Ishida, N., Imanaka, T., Teranishi, S. J. Catal. 58, 82 (1979).
- OYK74 Ohta, T., Yamada, M., Kuroda, H. Bull. Chem. Soc. Japan. 47, 1158 (1974).

Appendix C. Chemical States Tables References

OkHi76	Oku, M., Hirokawa, K. J. Electron Spectrosc. Relat. Phenom. 8, 475 (1976)	SGRS72	Sharma, J., Gora, T., Rimstidt, J.D., Staley, R. Chem. Phys. Lett. 15, 233 (1072)
PADS78	Povey, A.F., Ansell, R.O., Dickinson, T., Sherwood, P.M.A. J. Flectronal Chem 87 189 (1978)	SGSO70	 Siegbahn, K., Gelius, U., Siegbahn, H., Olson, E. Phys. Scr. 1, 272 (1970)
PCLH76	Patterson, T.A., Carver, J.C., Leyden, D.E., Hercules, D.M. J. Phys. Chem. 80, 1702 (1976).	SMAV72	Stec, W.J., Morgan, W.E., Albridge, R.G., Van Wazer, J.R. Inorg. Chem. 11, 220 (1972).
PEJ82	Powell, C.J., Erickson, N.E., Jach, T. J. Vac. Sci. Technol. 20, 625 (1981).	SMBM76	Svensson, S., Martensson, N., Basilier, E., Malmqvist, P.A., Gelius, U., Siegbahn, K. J. Electron Spectrosc. Relat. Phenom. 9, 51 (1976).
PFD73	Pignataro, S., Foffani, A., Distefano, G. Chem. Phys. Lett. 20, 351 (1973).	SMKM77	Shirley, D.A., Martin, R.L., Kowalczyk, S.P., McFeely, F.R., Ley, L. Phys. Rev. B 15, 544 (1977).
PKHL80	Praline, G., Koel, B.E., Hance, R.L., Lee, H.I., White, J.M. J. Electron Spectrosc. Relat. Phenom. 21, 17 (1980).	SNMK78	Salyn, Y.V., Nefedov, V.I., Makarova, A.G., Kuznetsova, G.N. Zh. Neorg. Khim. 23, 829 (1978).
PKLJ73	Poole, R.T., Kemeny, P.C., Liesegang, J., Jenkins, J.G., Leckey, R.C.G. J. Phys. F 3, L46 (1973).	SNRS76	Sergushin, N.N., Nefedov, V.I., Rozanov, I.A., Slovyanovski, N.B., Gracheva, N. Zh. Neorg. Khim. 21, 856 (1976).
PKLS72	Pollak, R.A., Kowalczyk, S.P., Ley, L., Shirley, D.A. Phys. Rev. Lett. 29, 274 (1972).	SPB76	Simon, D., Perrin, C., Baillif, P. C. R. Acad. Sci. Ser. C 283, 241 (1976).
PLJL73	Poole, R.T., Leckey, R.C.G., Jenkin, J.G., Liesegang, J. Phys. Rev. B 8, 1401 (1973).	SPB76a	Simon, D., Perrin, C., Bardolle, J. J. Microsc. Spectrosc. Electron 1, 175 (1976).
PMDS77	Pireaux, J.J., Martensson, N., Didriksson, R., Siegbahn, K., Riga, J., Verbist, J. Chem. Phys. Lett. 46, 215 (1977).	SRD79 SRH72	Shalvoy, R.B., Reucroft, P.J., Davis, B.H. J. Catal. 56, 336 (1979). Swartz, W.E., Ruff, J.R., Hercules, D.M. J. Am. Chem. Soc. 94, 5228
PRCV77	Pireaux, J.J., Riga, J., Caudano, R., Verbist, J.J., Delhalle, J., Delhalle, S., Andre, J.M., Gobillon, Y. Phys. Scr. 16, 329 (1977).	SRHH78	(1972). Steiner, P., Reiter, F.J., Hoechst, H., Huefner, S., Fuggle, J.C. Phys.
PVVA79	Pessa, M., Vuoristo, A., Vulli, M., Aksela, S., Vayrynen, J., Rantala, T., Aksela, H. Phys. Rev. B 20, 3115 (1979).	SSEW79	Lett. 66A, 229 (1978). Srinivasan, V., Stieffel, E.I., Elsberry, A., Walton, R.A. J. Am. Chem.
PWA79	Parry-Jones, A.C., Weightman, P., Andrews, P.T. J. Phys. C 12, 1587 (1979).	SSHU83	Soc. 101, 2612 (1979). Schulze, P.D., Shaffer, S.L., Hance, R.L., Utley, D.L. J. Vac. Sci. Tech-
PeKa77 PiLu72	Peterson, L.G., Karlsson, S.E. Phys. Scr. 16, 425 (1977). Pignataro, S. Lunazzi, L. Tetrahedron Lett. 52, 5341 (1972).	SSOT81	nol. A 1, 97 (1983). Suzuki, K., Soma, M., Onishi, T., Tamaru, K. J. Electron Spectrosc.
RBO72	Robert, T., Bartel, M., Offergeld, G. Surf. Sci. 33, 123 (1972).	550101	Relat. Phenom. 24, 283 (1981).
RGBH80	Ryzhkov, M.V., Gubanov, V.A., Butzman, M.P., Hagstrom, A.L., Kur-	STA74	Seno, M., Tsuchiya, S., Asahara, T. Chem. Lett., 405 (1974).
RHJF69	maev, E.Z. J. Electron Spectrosc. Relat. Phenom. 21, 193 (1980).Ramqvist, L., Hamrin, K., Johansson, G., Fahlman, A., Nordling, C. J.	STAB76	Shul'ga, Y.M., Troitskii, V.N., Aivazov, M.I., Borod'ko, Y.G. Zh. Neorg. Khim. 21, 2621 (1976).
RNS73	Phys. Chem. Solids 30, 1835 (1969). Rosolovskii, V.Y., Nefedov, V.I., Sinel'nikov, S.M. Izv. Akad. Nauk	STHU76	Seno, M., Tsuchiya, S., Hidai, M., Uchida, Y. Bull. Chem. Soc. Japan 49, 1184 (1976).
RRD78	SSSR, Ser. Khun. 7, 1445 (1973). Romand. R., Roubin, M., Deloume, J.P. J. Electron Spectrosc, Relat,	SWH71	Swartz, W.E., Wynne, K.J., Hercules, D.M. Anal. Chem. 43, 1884 (1971).
RSKC82	Phenom. 13, 229 (1978). Rogers, J.D., Sundaram, V.S., Kleiman, G.G., Castro, C.G.C., Douglas,	SZNS77	Salyn, J.V., Zumadilov, E.K., Nefedov, V.I., Scheibe, R., Leonhardt, G., Beyer, L., Hoyer, E. Z. Anorg, Allg. Chem. 432, A275 (1977).
Rigg72	R.A., Peterlevitz, A.C. J. Phys. F 12, 2097 (1982). Riggs, W.M. Electron Spectroscopy, Ed. D.A. Shirley, North-Holland	SaRa80	Sarma, D.D., Rao, C.N.R. J. Electron Spectrosc. Relat. Phenom. 20, 25 (1980).
	Publishing Company, London, 713 (1972).	ScBr81	Schaerli, M., Brunner, J. Z. Phys. B 42, 285 (1981).
RiVe83	Riga, R., Verbist, J.J. J. Chem. Soc. Perkin Trans. 11, 1545 (1983).	ScOs82	Schlapbach, L., Osterwalder, J. Solid State Commun. 42, 271 (1982).
RoRo76	Romand, M., Roubin, M. Analusis 4, 309 (1976).	ScSc82	Schlapbach, L., Scherrer, H.R. Solid State Commun. 41, 893 (1982).
SATD73	Seals, R.D., Alexander, R., Taylor, L.T., Dillard, J.G. Inorg. Chem. 12, 2486 (1973)	Scho72 Scho73	Schoen, G. J. Electron Spectrosc. Relat. Phenom. 1, 377 (1972). Schoen, G. Acta Chem. Scand. 27, 2623 (1973).
SBB80	Sun, T.S., Buchner, S.P., Byer, N.E. J. Vac. Sci. Technol. 17, 1067 (1980).	Scho73a Scho73b	Schoen, G. J. Electron Spectrosc. Relat. Phenom. 2, 75 (1973). Schoen, G. Surf. Sci. 35, 96 (1973).
SCKK75	Saethre, L.J., Carlson, T.A., Kaufman, J.J., Koski, W.S. Molec. Pharm. 11, 492 (1975).	SeTs76	Seno, M., Tsuchiya, S. J. Electron Spectrosc. Relat. Phenom. 8, 165 (1976).
SDI077	Sharma, J., Downs, D.S., Iqbal, Z., Owens, F.J. J. Chem. Phys. 67, 3045 (1977).	ShIq78 ShRe79	Sharma, J., Iqbal, Z. Chem. Phys. Lett. 56, 373 (1978).Shalvoy, R.B., Reucroft, P.J. J. Vac. Sci. Technol. 16, 567 (1979).
SDR80	Shalvoy, R.B., Davis, B.H., Reucroft, P.J. Surf. Interface Anal. 2, 12 (1980).	ShTr75	Shabanova, I.N., Trapeznikov, V.A. J. Electron Spectrosc. Relat. Phenom. 6, 297 (1975).
SFS77	Shalvoy, R.B., Fisher, G.B., Stiles, P.J. Phys. Rev. B 15, 1680 (1977).	Sher76	Sherwood, P.M.A. J. Chem. Soc. Faraday Trans. 11 72, 1806 (1976).
SGCT74	Swartz, W.E., Gray, R.C., Carver, J.C., Taylor, R.C., Hercules, D.M. Spectrochim Acta A 30, 1561 (1974).	SiLe78	Sinharoy, S., Levenson, L.L. Thin Solid Films 53, 31 (1978).

SiWo80	Sinharoy, S.,	Wolfe,	A.L. J	Electron	Spectrosc.	Relat.	Phenom.	18,
	369 (1980).							

- SmWa77 Smith, T.J., Walton, R.A. J. Inorg. Nucl. Chem. 39, 1331 (1977).
- SrWa77 Srinivasan, R., Walton, R.A. Inorg. Chim. Acta 25, L85 (1977).
- StEd75 Stevens, G.C., Edmonds, T. J. Catal. 37, 544 (1975).
- Steiner, P., Hoechst, H. Z. Phys. B 35, 51 (1979).
- SwAl74 Swartz, W.E., Alfonso, R.A. J. Electron Spectrosc. Relat. Phenom. 4, 351 (1974).
- SwHe71 Swartz, W.E., Hercules, D.M. Anal. Chem. 43, 1774 (1971).
- Swif82 Swift, P. Surf. Interface Anal. 4, 47 (1982).
- TBHH77 Thomas, V.P., Beyer, L., Hennig, K., Hoyer, E., Nefedov, V.I., Zumadilov, E.K. Z. Anorg. Allg. Chem. 437, 299 (1977).
- TBVL82 Thibaut, E., Boutique, J., Verbist, J.J., Levet, J.C., Noel, H. J. Am. Chem. Soc. 104, 5266 (1982).
- TIWB72 Thomas, J.M., Adams, I., Williams, R.H., Barber, M. J. Chem. Soc. Faraday Trans. II 68, 755 (1972).
- TLR78 Taylor, J.A., Lancaster, G.M., Rabalais, J.W. J. Electron Spectrosc. Relat. Phenom. 13, 435 (1978).
- TMR80 Turner, N.H., Murday, J.S., Ramaker, D.E. Anal. Chem. 52, 84 (1980).
- TRLK73 Tolman, C.A., Riggs, W.M., Linn, W.J., King, C.M., Wendt, R.C. Inorg. Chem. 12, 2772 (1973).
- TVG76 Teuret-Noel, C., Verbist, J., Bogillon, Y. J. Microsc. Spectrosc. Electron 1, 255 (1976).
- TaRa81 Taylor, J.A., Rabalais, J.W. J. Chem. Phys. 75, 1735 (1981).
- Taylor, J.A. Appl. Surf. Sci. 7, 168 (1981).
- Tayl82 Taylor, J.A. J. Vac. Sci. Technol. 20, 751 (1982).
- ThSh78 Thomas, J.H., Sharma, S.P. J. Vac. Sci. Technol. 15, 1707 (1978).
- Tric74 Tricker, M.J. Inorg. Chem. 13, 743 (1974).
- UeOd81 Ueno, T., Odajima, A. Jpn. J. Appl. Phys. 20, L501 (1981).
- UeOd82 Ueno, T., Odajima, A. Jpn. J. Appl. Phys. 21, 230 (1982).
- UmRe78 Umezawa, Y., Reilley, C.N. Anal. Chem. 50, 1294 (1978).
- VHE82 Van Der Veen, J.F., Himpsel, FJ., Eastman, D.E. Phys. Rev. B 25, 7388 (1982).
- VLDH77 Veal, B.W., Lam, D.J., Diamond, H., Hoekstra, H.R. Phys. Rev. B 15, 2929 (1977).
- VRPC74 Verbist, J., Riga, J., Pireaux, J.J., Caudano, R. J. Electron Spectrosc. Relat. Phenom. 7, 193 (1974).
- VVSW77 Van De Vondel, D.F., Van Der Kelen, G.P., Schmidbaur, H., Wolleben, A., Wagner, F.E. Phys. Scr. 16, 364 (1977).
- VWHS81 Van Der Laan, G., Westra, C., Haas, C., Sawatzky, G.A. Phys. Rev. B 23, 4369 (1981).
- VWVB77 Van De Vondel, D.F., Wuyts, L.F., Van Der Kelen, G.P., Bevernage, L. J. Electron Spectrosc. Relat. Phennom. 10, 389 (1977).
- VaVe80 Van Doveren, H., Verhoeven, J.A. J. Electron Spectrosc. Relat. Phenom. 21, 265 (1980).
- VanO77 Van Ooij, W.J. Surface Technology 6, 1 (1977).
- Vann76 Vannerberg, N.G. Chem. Scr. 9, 122 (1976).
- Vayr81 Vayrynen, J. J. Electron Spectrosc. Relat. Phenom. 22, 27 (1981).
- WHMC78 Wittberg, T.N., Hoenigman, J.R., Moddeman, W.E., Cothern, C.R., Gulett, M.R. J. Vac. Sci. Technol. 15, 348 (1978).
- WPHK82 Wagner, C.D., Passoja, D.E., Hillery, H.F., Kinisky, T.G., Six, H.A., Jansen, W.T., Taylor, J.A. J. Vac. Sci. Technol. 21, 933 (1982).

- WRDM79 Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., Mullenberg, G.E. Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, MN 55344 (1979).
- WSP77 Weser, U., Sokolowski, G., Pilz, W. J. Electron Spectrosc. Relat. Phenom. 10, 429 (1977).
- WVV79 Willemen, H., Van De Vondel, D.F., Van Der Kelen, G.P. Inorg. Chim. Acta 34, 175 (1979).
- WWC78 Wertheim, G.K., Wernick, J.H., Crecelius, G. Phys. Rev. B 18, 878 (1978).
- WWVV77 Willemen, H., Wuyts, L.F., Van De Vondel, D.F., Van Der Kelen, G.P. J. Electron Spectrosc. Relat. Phenom. 11, 245 (1977).
- WZR80 Wagner, C.D., Zatko, D.A., Raymond, R.H. Anal. Chem. 52, 1445 (1980).
- WaTa80 Wagner, C.D., Taylor, J.A. J. Electron Spectrosc. Relat. Phenom. 20, 83 (1980).
- WaTa82 Wagner, C.D., Taylor, J.A. J. Electron Spectrosc. Relat. Phenom. 28, 211 (1982).
- Wagn75 Wagner, C.D. Discuss. Faraday Soc. 60, 291 (1975).
- Wagn77 Wagner, C.D. Chapter 7 in Handbook of X-ray and Ultraviolet Photoelectron Spectroscopy, Ed. Briggs, Heyden and Sons, London (1977).
- Wagn78 Wagner, C.D. J. Vac. Sci. Technol. 15, 518 (1978).
- Wagn80 Wagner, C.D. J. Electron Spectrosc. Relat. Phenom. 18, 345 (1980).
- Walt77 Walton, R.A. J. Inorg. Nucl. Chem. 39, 549 (1977).
- WeAn80 Weightman, P., Andrews, P.T. J. Phys. C 13, L815, L821 (1980).
- WeMe78 Westerhof, A., Meijer, H.J.D. J. Organometal. Chem. 144, 61 (1978).
- YMK78 Yamashita, M., Matsumoto, N., Kida, S. Inorg. Chim. Acta 31, L381 (1978).
- YNAB77 Yatsimirskii, K.B., Nemoshalenko, V.V., Aleshin, V.G., Bratushko, Y.I., Moiseenko, E.P. Chem. Phys. Lett. 52, 481 (1977).
- YNNA74 Yatsimirskii, K.B., Nemoshalenko, V.V., Nazarenko, Y.P., Aleshin, V.G., Zhilinskaya, V.V., Taldenko, Y.D. Dokl. Akad. Nauk SSSR (Phys. Chem.) 217, 835 (1974).
- YNNA77 Yatsimirskii, K.B., Nemoshalenko, V.V., Nazarenko, Y.P., Aleshin, V.G., Zhilinskaya, V.V., Tomashevsky, N.A. J. Electron Spectrosc. Relat. Phenom. 10, 239 (1977).
- YYS78 Yoshida, T., Yamasaki, K., Sawada, S. Bull. Chem. Soc. Jpn. 51, 1561 (1978).
- YYS79 Yoshida, T., Yamasaki, K., Sawada, S. Bull. Chem. Soc. Jpn. 52, 2908 (1979).
- YaBa80 Yang, S.J., Bates, C.W. Appl. Phys. Lett. 36, 675 (1980).
- YoSa74 Yoshida, T., Sawada, S. Bull. Chem. Soc. Jpn. 47, 50 (1974).
- YoYa81 Yoshida, T., Yamasaki, K. Bull. Chem. Soc. Jpn. 54, 935 (1981).
- Yoshida, T. Bull. Chem. Soc. Jpn. 51, 3257 (1978).
- Yosh80 Yoshida, T. Bull. Chem. Soc. Jpn. 53, 498 (1980).
- ZSOS79 Zhdan, P.A., Shepelin, A.P., Osipova, Z.G., Sokolovskii, V.D. J. Catal. 58, 8 (1979).
- ZeHa71 Zeller, M.V., Hayes, R.G. Chem. Phys. Lett. 10, 610 (1971).
- ZiHe78 Zingg, D.S., Hercules, D.M. J. Phys. Chem. 82, 1992 (1978).

Acknowledgment: Perkin-Elmer Corporation, Physical Electronics Division (PHI), acknowledges Dr. Charles Wagner's contributions to the Chemical States Tables. The entries in the tables, used with his permission, were compiled by Dr. Wagner in collaboration with PHI.

2/0

Appendix D. Valence Band Spectra

In some cases, the chemical shifts observed in core level XPS are not sufficient to identify the surface chemistry of a particular sample. In the case of XPS analysis of polymers, the changes in carbon chemistry may be quite subtle in core level XPS or the chemical shifts may be only a secondary or tertiary effect. With the routine use of monochromators in XPS and the high counting rates made possible by current spectrometer technologies, many analysts use valence bands for identification of materials. In many cases, the valence bands are used as fingerprints for a sample or a surface treatment, rather than for identifying specific molecular orbitals. The fingerprints of the valence bands may then be used to aid in both the identification of polymers and the quantification of polymer mixtures by using methods such as linear least squares fitting. The following is a small compilation of valence band spectra of organic and inorganic materials to illustrate the utility of valence band data.

Perkin-Elmer Corporation Physical Electronics Division

Perkin-Elmer Corporation Physical Electronics Division

Appendix E. Atomic Sensitivity Factors for X-ray Sources at 90°

This table is based upon empirical peak area values* corrected for the system's transmission function. The values are only valid for and should only be applied when the electron energy analyzer used has the transmission characteristics of the spherical capacitor type analyzer equipped with an Omni Focus III lens supplied by Perkin-Elmer. The data are calculated for x-rays at 90° relative to the analyzer.

Element	Line	ASF	Element	Line	ASF		Element	Line	ASF	Element	Line	ASF
Ag	3d	5.198	Eu	4d	2.210		Na	1s	1.685	Si	2р	0.283
Al	2p	0.193	F	1s	1.000		Nb	3d	2.517	Sm	3d5/2	2.907
Ar	2p	1.011	Fe	2p	2.686		Nd	3d	4.697	Sn	3d5/2	4.095
As	3d	0.570	Ga	2p _{3/2}	3.341		Ne	1s	1.340	Sr	3d	1.578
Au	4f	5.240	Gd	4d	2.207		Ni	2p	3.653	Та	4f	2.589
В	1s	0.159	Ge	2p _{3/2}	3.100		0	1s	0.711	Tb	4d	2.201
Ba	4d	2.627	Hf	4f	2.221		Os	4f	3.747	Tc	3d	3.266
Be	1s	0.074	Hg	4f	5.797		Р	2p	0.412	Te	3d5/2	4.925
Bi	4f	7.632	Ho	4d	2.189		Pb	4f	6.968	Th	4f _{7/2}	7.498
Br	3d	0.895	Ι	3d5/2	5.337		Pd	3d	4.642	Ti	2p	1.798
С	1s	0.296	In	3d5/2	3.777		Pm	3d	3.754	TI	4f	6.447
Ca	2p	1.634	Ir	4f	4.217		Pr	3d	6.356	Tm	4d ·	2.172
Cd	3d5/2	3.444	K	2p	1.300	•	Pt	4f	4.674	U	4f _{7/2}	8.476
Ce	3d	7.399	Kr	3d	1.096		Rb	3d	1.316	v	2p	1.912
C1	2p	0.770	La	3d	7.708		Re	4f	3.327	W	4f	2.959
Co	2p	3.255	Li	1s	0.025		Rh	3d	4.179	Xe	3d5/2	5.702
Cr	2p	2.201	Lu	4d	2.156		Ru	3d	3.696	Y	3d	1.867
Cs	3d _{5/2}	6.032	Mg	2s	0.252		S	2p	0.570	Yb	4d	2.169
Cu	2p	4.798	Mn	2p	2.420		Sb	3d5/2	4.473	Zn	2p _{3/2}	3.354
Dy	4d	2.198	Mo	3d	2.867		Sc	2p	1.678	Zr	3d	2.216
Er	4d	2.184	Ν	1s	0.477		Se	3d	0.722			

*C.D Wagner, et al. Surf. Interface Anal. 3, 211 (1981).

Appendix F. Atomic Sensitivity Factors for X-ray Sources at 54.7°

This table is based upon empirical peak area values^{*} corrected for the system's transmission function. The values are only valid for and should only be applied when the electron energy analyzer used has the transmission characteristics of the spherical capacitor type analyzer equipped with an Omni Focus III lens supplied by Perkin-Elmer. The data are calculated for x-rays at 54.7° relative to the analyzer.

Element	Line	ASF									
Ag	3d	5.987	Eu	4d	2.488	Na	1s	1.685	Si	2p	0.339
Al	2p	0.234	F	1s	1.000	Nb	3d	2.921	Sm	3d5/2	3.611
Ar	2p	1.155	Fe	2p	2.957	Nd	3d	5.671	Sn	3d _{5/2}	4.725
As	3d	0.677	Ga	2p _{3/2}	3.720	Ne	1s	1.340	Sr	3d	1.843
Au	4f	6.250	Gd	4d	2.484	Ni	2p	4.044	Ta	4f	3.082
В	1s	0.159	Ge	2p _{3/2}	3.457	0	1s	0.711	Tb	4d	2.477
Ba	3d _{5/2}	7.469	Hf	.4f	2.639	Os	4f	4.461	Tc	3d	3.776
Be	1s	0.074	Hg	4f	6.915	Р	2p	0.486	Te	3d5/2	5.705
Bi	4f	9.140	Но	4d	2.469	Pb	4f	8.329	Th	4f _{7/2}	9.089
Br	3d	1.053	I	3d _{5/2}	6.206	Pd	3d	5.356	Ti	2p	2.001
С	1s	0.296	In	3d _{5/2}	4.359	Pm	3d	4.597	TI	4f	7.691
Ca	2p	1.833	Ir	4f	5.021	Pr	3d	7.627	Tm	4d	2.454
Cd	3d _{5/2}	3.974	K	2p	1.466	Pt	4f	5.575	U	4f _{7/2}	10.315
Ce	3d	8.808	Kr	3d	1.287	Rb	3d	1.542	V	2p	2.116
Cl	2p	0.891	La	3d	9.122	Re	4f	3.961	W	4f	3.523
Co	2p	3.590	Li	1s	0.025	Rh	3d	4.822	Xe	3d _{5/2}	6.64
Cr	2p	2.427	Lu	4d	2.441	Ru	3d	4.273	Y	3d	2.175
Cs	3d _{5/2}	7.041	Mg	2s	0.252	S	2p	0.666	Yb	4d	2.451
Cu	2p	5.321	Mn	2p	2.659	Sb	3d _{5/2}	5.176	Zn	2p _{3/2}	3.726
Dy	4d	2.474	Mo	3d	3.321	Sc	2p	1.875	Zr	3d	2.576
Er	4d	2.463	N	1s	0.477	Se	3d	0.853			

200

*C.D Wagner, et al. Surf. Interface Anal. 3, 211 (1981).

15	Element 2s	2p1/2	2p _{3/2}	3s	Photoe 3pi/2	electro 3p _{3/2}	n Lines 3d _{3/2}	3d5/2	4s	4pu2	4p _{3/2}				KL ₁ L ₁	Auger Lines KL ₁ L ₂₃	KL23L23 ^{b)}		
Li 56	5		1/4474																
Be 11	2										123						1384		
C 28	85			0,11011							TOUR STOCK			-			1223		
N 39	98																1107		
0 53	31 23														1013	999	978		
F 68	85 30										100				878	859	832		
Ne 80	03 41	14													561	532	493		
Mg 13	303 89	50	F.												381	347	301		
			1									L3M23M2	^d I	.2M23M23 ⁽²⁾	L3M23M45 (1	P) L ₃ M ₂₃ M ₄₅ (³ P)	L2M23M45 (1P)	L3M45M45 ^{d)}	L2MeM
AI	118	73									U TRANSPORT		1419	- the fact					
Si	151	100	99	14									1394						
r S	228	165	164	18									1336		15 A 16 3 1				
CI	271	201	199	17	6								1304						
Ar	320	244	242	24				4					1272						
K	380	297	294	35	19) 							1239						
Ca	440	351	347	45	20								1197		1118				
ac Ti	561	460	454	59	13								1098	-	1068				
v	626	520	512	66	37	1							1048		1014			977	
Cr	696	583	574	75	43	3							997		959			917	
Mn	769	650	639	83	48	3							944		900			852	
Fe	845	720	707	92	23							838	888	831	839	771		713	609
Ni	925	870	853	101	67	,						778		772	712	706		641	624
Cu	1097	953	933	123	77	75						719		712	648	640	628	568	548
Zn	1195	1045	1022	140	91	89 -	1	0				660		652	582	573	559	495	472
Ga	1301	1144	1117	160	107	104	1	9				597		589	514	504	487	419	392
Ge		1248	1217	181	120	122	30	42				334		325	444	433	412	342	310
As		1539	1324	232	169	163	57	56					Mail	LesN21	299	287	257	181	140
Br				256	189	182	70	69	15	5	i.		13	90			70.0		
				287	216	208	88	87	21	8									
Kr				325	249	240	113	111	31	1	6	Care Constant Con-	13	85	UNU				
Kr Rb				300	311	200	158	156	45	2	4	Seattle 1			M450723 V	756			
Kr Rb Sr							101	120	51	2	8				1368	1337			
Kr Rb Sr Y Zr				430	343	330	181	11/91			P	and the second second second second			1000	- 1.07			

Appendix G. Line Positions^{a)} by Element for Al K α X-rays

g) The 5s is of low in in the shake-up structure of the ites of the energy. ary

nic Number/Element 3s 3p _{1/2} 3p _{3/2}	3d ₃₂ 3d	y2 4s	4p1/2 4j	p.y.2 4	Photo dy2 4d52	electron 4f _{5/2}	Lines 4f _{7/2}	5s	5p <i>u</i> 2	5p _{3/2}	5dy2	5d _{5/2}	is	6p1/2	6p3/2	M45N23V	M5N45N45 ^{d)}	Auger Lii M4N45N45	ies ^{d)} M45N45V	M5VV	M4VV
Nb 467 376 361 Mo 506 412 394 Tc 544 445 425 Ru 586 484 462 Rh 629 521 497 Pd 671 560 533 Ag 719 604 573 Cd 772 652 618 Ia 828 703 665 Sa 885 757 715 Sb 944 813 767 Te 1009 871 8205 1 1071 930 875 Xe 1141 996 934 Ca 1292 1138 1064 La 1208 1128 1021 Pr 1339 1242 Nd 1301 Pm 539 942 1339 1242 Nd 1301 701 705 Dy H6	205 20 231 22 257 25 284 28 312 30 330 33 340 33 340 33 340 33 340 33 340 48 537 52 583 57 630 61 683 67 796 78 853 83 902 89 903 98 904 108 103 98 1060 10 1155 11 1276 13 1333 13 1393 13	2 56 3 63 68 0 75 7 81 7 88 8 98 5 110 4 123 5 137 8 153 3 153 3 153 3 153 3 153 3 153 9 187 0 207 6 234 1 254 6 275 4 290 2 305 1 320 2 305 1 320 3 49 2 6 3 68 8 98 8 98 5 110 4 123 5 137 8 153 3 157 5 137 5 147 5 1	31 36 39 4: 44 5: 66 66 77 8 99 1 1 173 1 193 1 173 1 193 1 123 2 245 2 245 2 245 2 245 2 245 2 245 2 245 2 245 2 245 2 245 2 245 2 245 2 245 2 245 2 245 2 245 2 2 2 2 2 2 2 2 2 2 2 2 2	3 ^{e)} 8 2 0 9 9 9 9 9 9 9 9 9 9 9 9 9	11 17 25 33 12 41 149 13 61 80 77 13 90 106 103 115 121 129 129 129 129 129 129 128 140 146 152 160 167 175 182 206 196 222 211	8 8 8 8 9 9 8 3 9 9 8 3 9 9		12 17 17 25 31 34 36 38 39 38 41 39 38 41 39 38 41 39 52 53 51 57 63	15 17 18 18 19 22 23 30 31 32 30 31 32 30 34 38	24 24 25 24 27 30						1319 1299 1280 1256 1234 1211 1191 1191	12 12 12 12 11 11 1135 1110 1084 1038 1032 1035 982 955 931 900 867 83 975 771 66 66 66 66 65 55 53 44 44 33 NaNr7 1306	87 64 41 12 85 59 1129 1103 1076 1049 1022 997 942 918 886 854 37 78 88 44 42 22 998 886 854 37 78 88 44 22 999 26 88 84 44 22 918 886 854 37 77 78 88 88 88 88 88 88 88 8	411 368 314 273	260	230 117 56
Ta W Re Os Ir Pi Au Hg Ti Pb Bi Bi Th DU Np Pu Am Cm		563 594 625 658 692 725 763 805 847 899 944 133	463 4 491 4 518 4 518 4 518 4 609 1 643 5 662 2 720 6 806 4 1762 6 806 4 1170 4 1272 1327	401 424 446 471 495 520 547 579 610 644 679 965 1043 1086 1121	238 226 256 243 274 260 293 279 312 297 333 335 333 335 381 361 406 385 434 412 464 440 779 736 816 771 850 802 883 832 919 865 958 901 904 923	24 33 42 54 64 74 88 105 122 142 162 342 342 348 414 439 463 451 4514	22 31 40 51 61 71 84 101 118 137 157 333 377 402 427 449 473 498	69 75 99 88 ⁸¹ 96 ⁸³ 110 ⁸⁰ 125 ⁸⁰ 133 ⁸⁰ 150 ⁸⁰ 161 ⁸⁰ 294 322	43 47 44 48 52 57 85 95 107 119 234 260	33 37 74 67 74 84 93 177 195 206 216 216 212 246	12 15 21 27 93 103 119	10 13 18 24 85 94 101 105 109 113 120 124	42 44	25 26 29 31 31 32 34 35	17 17 18 18 18 18 18 18 18	1316 1320 1322 1326 1329 1334 1342 1364 1369 N₆O₂V 1419 1412	1306 1307 1309 1311 1314 1317 1324 1336 1343 1354 NerOeV 1239 1204	NsN50 1247 1246 1241	N₄N₄O 1231 1230 1222	N704504 1412 1401 1394 1387 1335	N6O4 416 140 139 139 138 140 138

Appendix H. Line Positions^{a)} by Element for Mg K α X-rays

mic Nu	nber/Element 1s 2s	2p _{1/2}	2p _{3/2}	35	Photoe 3p1/2	electron 3p _{3/2}	n Lines 3d _{3/2}	3d ₉₂	45	4p _{1/2} 4p _{3/2}			KL ₁ L ₁	Auger Lines KL ₄ L ₂₃	KL23L23 ^{b)}		
Li Be B C N O F	56 112 189 285 398 531 23 685 30												780 645	766 626	1151 1077 990 874 745 599		
Ne Na	863 41 1072 64	14 31	1										492 328	469 299	436 260		
Mg	1303 89	50									L3M29M2	o ^{ci} L ₂ M ₂₃ M ₂₃ ^{ci}	148 L3M23M45 (¹ P)	114 L3M23M45 (³ P)	68 L2M23M45 (¹ P)	LaMasMas ^{db}	L2MeM
Al Si	118	100	99									1186					
P S	188	131 165	130 164	14 18								1134 1103					
CI Ar	271	201 244	199 242	17 24	6							1071 1039					
K Ca	380 440	297	294 347	35 45	19 26							1006 964					
Sc Ti	499 561	404 460	399 454	51 59	29 33							916 865	895 [835]				
V Cr	623	520 583	512	66 75	37							815 764	781			744	
Mn	765	650	639	83	48							711	667	not subcom		619	
Co	92	793	778	101	60						605 545	598	544	538		480	465
Cu	10	17 953	933	123	77	75		Collect			486	479	415	407	395	335	315
Ga	119	1145	1117	140	107	89	1				427 364	356	281	340 271	326 254	262 186	239
Ge As		1248	1217	181 205	126 146	122 141	30 43	29 42			301	292	211	200	179	109	77
Se Br				232 256	169 189	163 182	57 70	56 69	15	5	M ₂₃ M ₄₅ N 1157	23				(6) 器器	
Kr Rb				287 325	216 249	208 240	88 113	87 111	21 31	8 16	1152						
Sr Y				360 394	281 311	270 299	136 158	134	39 45	21 24			M45N23V 1123	MasNasNas			
Zr	NH ST			430	343	330	181	179	51	28			1160	1104			
Lines Includ Desig Includ No sir The 4 The 5	enclosed in les KVV de nation is ov les LVV wh nple 4p _{1/2} l d doublet fo s is of low	boxes a signatic ersimpl een M le ine exis or these intensity	are the on whee ified. evels at ts for t elemer y and is	ones n L23 re not his gr nts is o s often	which is not in corr oup of comple	are n a cor e and f elem ex ano e sha	nost u e leve l MVV hents. d is va ke-up	seful fo L · · · / when riable v structur	r ide N le vith re of	ntifying chemica vels are not in co chemical state be the 4f lines. The	states. re. cause of multi se values are e	plet splitting an stimates of the e	d multi-electro energy.	n processes.			
R.																	

		181 19 19											0		and the other							34				
Atomic N	Number 3s	r/Elemo 3p _{1/2}	ent 3p _{3/2}	3d _{3/2}	3d5/2	4s .	4p1/2	4p _{3/2}	4d _{3/2}	Photoe 4d _{5/2}	lectron Li 4f _{5/2} 4f	ines 712	5s	5p _{1/2}	5p _{3/2}	5d _{3/2}	5d _{5//}	2 6s	6p _{1/2}	6p _{3/2}	M45N23V	M5N45N4:	Auger I ^{d)} M4N45N	ines 45 ^{d)} M45N4	5V M5VV	M4VV
H Nb 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe 55 Cs 56 Ba 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho	467 506 544 586 629 671 719 772 828 885 944 1009 1071 1141 1219	376 412 445 484 521 560 604 652 703 757 813 871 930 996 1069 1138 1208	361 394 425 462 497 533 573 618 665 715 767 820 875 934 1002 1064 1128 1184 1242	205 231 257 284 312 340 374 412 452 493 537 583 630 658 740 796 853 740 796 853 740 796 853 1003 1060 1108 1155 1218	202 228 253 280 307 335 368 405 444 485 528 619 670 726 781 836 884 932 981 1034 1081 1126 1186 1241	56 63 63 68 75 81 88 75 81 88 98 110 123 137 153 1170 187 207 234 254 275 200 305 3200 3377 349 3633 378 396 417 435 147 435 147 145 147 145 147 145 147 145 147 145 147	311 33 33 35 35 213 223 224 224 224 224 224 224 224 224 22	43 ^{e)} 43 ^{e)} 48 52 60 69 78 89 99 9111 123 139 161 179 197 207 207 218 228 242 250 255 272 285 2772 285 297 309	111 17 25 33 42 51 63 80 93 106 112 12 12 12 12 12 12 12 12 12 12 12 12	41 49 61 77 90 103 109 9 9 8 0 6 6 2 2 9	8 8 8 8 9		12 18 17 25 31 34 36 38 39 38 41 39 43 45 48 49	1 1 1 1 1 1 1 1 1 1 2 2 2 2 30	5 7 8 8 8 9 9 9 9 9 1 2 3 3 24						1086 1066 1047 1023 1001 978 958	902 877 851 825 799 772 749 722 698 667 634	1054 1031 1008 979 952 926 896 870 843 816 789 762 738 709 685 653 621 600 564 525 481 449 404 369 326			
68 Er 69 Tm 70 Yb 71 Lu 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 90 Th 92 U 93 Np 94 Pu 95 Am 96 Cm 97 Bk 98 Cf						451 470 482 509 534 653 594 625 658 692 725 763 805 847 893 940	368 384 413 447 463 491 518 548 578 609 643 682 720 762 806 1170 1272	321 333 341 360 401 424 446 471 495 520 547 579 610 610 644 679 965 1043 1086 1121	16 17 18 206 222 238 256 274 293 312 333 381 406 434 464 4713 779 816 850 883 919 958 994	7 5 2 196 211 226 243 260 279 297 315 335 361 385 361 385 361 385 412 440 676 676 771 802 832 865 901 933	9 8 3 9 7 16 14 24 22 33 31 42 42 42 42 54 51 16 4 61 61 61 61 61 61 61 61 61 61	4 2 4 3 3 8 3 7 7 7 3 3 3 7 7 2 2 7 49 7 3 98 8 23	52 53 51 57 63 69 75 99 96 ⁸¹ 10 ⁸⁰ 110 ⁸⁰ 125 ⁸⁰ 150 ⁸⁰ 150 ⁸⁰ 161 ⁸⁰ 322 351	31 32 30 34 38 43 47 4 4 4 5 7 85 95 107 107 119 234 260	24 25 24 27 30 33 37 4 4 8 2 4 67 74 8 4 93 177 195 206 216 216 216 232 246	12 15 21 27 93 103 119	10 13 18 24 85 94 101 105 109 113 120 124	42 44	25 26 29 31 31 32 34 35	17 17 18 18 18 18 18 18 18 19	N ₅ N ₆₇ N ₇ 1084 1085 1087 1089 1093 1096 1101 1109 1119 1131 1136 N ₆ O ₂₃ V 1186 1179	N4N67N7 1073 1073 1075 1076 1078 1081 1081 1091 1103 1110 1121 N67O45V 1006 971	N\$№70 1014 1013 1008	N4N60 998 997 989	N7045C 1179 1168 1161 1154 1102	45 N6O450 1183 1173 1166 1158 1150 1171 1153
		1		141											3 10						L	1				

.

Perkin-Elmer Corporation Physical Electronics Division

Appendix J. Line Positions in Numerical Order

For photoelectron lines, the spin orbit splitting is indicated in parentheses. Auger lines are in italics, and the photon source for the Auger excitation is indicated in parentheses.

7	Lu 4f _{7/2}	(2)	89	Mg 2s	1	175	Tm 4d		299	Y 3p _{3/2}	(12)
14	Hf 4f _{7/2}	(2)	90	Ba 4d _{5/2}	(3)	179	Zr 3d5/2	(2)	301	Mg	(Al)
23	O 2s		98	Er	(Al)	181	Se	(Al)	307	Rh 3d5/2	(5)
22	Ta 4f	(2)	99	Si 2p3/2	(1)	182	Yb 4d	\$	309	Ho 4p3/2	(44)
25	Sn 4d		101	Hg 4f7/2	(4)		Br 3p _{3/2}	(7)	315	Pt 4d5/2	(17)
29	Ge 3d _{5/2}	(1)	103	La 4d _{5/2}	(3)	186	Ga	(<i>Mg</i>)	320	Ar 2s	
30	F 2s		104	Ga 3p _{3/2}	(3)	188	P2s		321	Er 4p _{3/2}	(47)
31	W 4f _{7/2}	(2)	109	Ce 4d _{5/2}	(3)	189	B 1s		330	Zr 3p3/2	(14)
37	V 3p			Ge	(Mg)	196	Lu 4d _{5/2}	(10)	333	Th 4f7/2	(9)
40	Re 4f _{7/2}	(2)	112	Rb 3d _{5/2}	(1)	199	Cl 2p3/2	(2)		Tm 4p _{3/2}	(51)
41	Ne 2s			Be 1s		202	Nb 3d5/2	(3)	335	Pd 3d5/2	(5)
42	As 3d _{5/2}	(1)	115	Pr 4d		208	Kr 3p _{3/2}	(8)		Au 4d _{5/2}	(18)
43	Cr 3p		117	Но	(Al)	211	Hf 4d _{5/2}	(11)		Си	(Mg)
48	Mn 3p		118	Tl 4f _{7/2}	(4)	226	Ta 4d _{5/2}	(12)	341	Yb 4p3/2	(48)
49	I 4d _{5/2}	(2)		Al 2s		228	S 2s		342	Ge	(Al)
50	Mg 2p		121	Nd 4d			Mo 3d _{5/2}	(3)	347	Ca 2p3/2	(3)
51	Os 4f7/2	(3)	122	Ge 3p _{3/2}	(4)	240	Rb 3p3/2	(9)	360	Lu 4p3/2	(53)
53	Fe 3p		128	Eu 4d		242	Ar 2p _{3/2}	(2)	361	Hg 4d5/2	(20)
56	Li 1s		129	Sm 4d		243	W 4d _{5/2}	(13)		Nb 3p3/2	(15)
	Se 3d _{5/2}	(1)	131	P 2p _{3/2}	(1)	260	Re 4d _{5/2}	(14)	368	Ag 3d5/2	(6)
60	Co 3p		134	Sr 3d _{5/2}	(2)		Na	(Mg)	369	Gd	(Mg)
61	Ir 4f _{7/2}	(3)	137	Pb 4f7/2	(5)		Tb	(Al)	377	U 4f _{7/2}	(11)
	Xe 4d _{5/2}	(2)	140	Gd 4d		262	Zn	(Mg)	380	K 2s	
64	Na 2s		141	As 3p _{3/2}	(5)		As	(Al)	385	Tl 4d _{5/2}	(21)
67	Ni 3p		146	Tb 4d		270	Sr 3p3/2	(11)	394	Mo 3p _{3/2}	(17)
69	Br 3d _{5/2}	(1)	151	Si 2s		271	Cl 2s		398	N 1s	
71	Pt 4f7/2	(3)	152	Dy 4d		279	Os 4d _{5/2}	(14)	399	Sc 2p3/2	(5)
73	Al 2p		156	Y 3d _{5/2}	(2)	280	Ru 3d _{5/2}	(4)	404	Eu	(Mg)
75	Cu 3p _{3/2}	(2)	157	Bi 4f7/2	(5)	285	Tb 4p3/2	(37)	405	Cd 3d5/2	(7)
77	Cs 4d _{5/2}	(3)	160	Ho 4d			C 1s		408	Ni	(Mg)
84	Au 4f _{7/2}	(4)	163	Se 3p _{3/2}	(6)	294	K 2p _{3/2}	(3)	412	Pb 4d5/2	(22)
87	Kr 3d _{5/2}	(1)	164	S 2p _{3/2}	(1)	297	Dy 4p3/2	(40)	419	Ga	(Al)
89	Zn 3p _{3/2}	(2)	167	Er 4d	ļ		Ir 4d _{5/2}	(15)	436	Ne	(Mg)

 Φ

258

Handbook of X-ray Photoelectron Spectroscopy

440	Ca 2s	1	669	Ne	(Al) ,	874	N	(Mg)	1103 Cd	(41)
449	Sm	(Mg)	670	Xe 3ds/2	(13)	884	Ce 3den	(18)	1107 N	(A1)
441	Bi 4d5/2	(24)	676	Th 4d52	(37)	886	Ba	(AI)	1117 Ga 2n.	(27)
444	In 3d _{5/2}	(8)	682	Sm	(Al) ·	896	Ag	(Mg)	1126 En 3d-	(21)
454	Ti 2p3/2	(6)	685	F 1s		900	Mn	(AI)	1120 Eu 505/2	(30)
462	Ru 3p3/2	(22)		Cs	(Mg)	916	Sc	(Mg)	1149 Sc	(AI)
480	Co	(Mg)	696	Cr 2s	1 07	918	Cs	(Al)	1154 Ri	(Ma)
485	Sn 3d5/2	(8)	707	Fe 2p32	(13)	926	Pd	(Mg)	1159 Pd	(11)
493	Na	(Al)	709	Xe	(Mg)	932	Pr 3dsp	(20)	1161 Ph	(Ma)
495	Zn	(Al)	713	Co	(Al)	933	Cu 2pm	(20)	1168 TI	(M_g)
497	Rh 3p3/2	(24)	715	Sn 3p3/2	(42)	942	Xe	(Al)	1179 Ho	(Mg)
499	Sc 2s		726	Cs 3dsp	(14)	952	Rh	$(M_{\mathcal{P}})$	1183 Au	(M_g)
512	V 2p _{3/2}	(8)		Cr	(Mg)	959	Cr	(Al)	1185 Rh	(Mg)
525	Nd	(Mg)	736	U 4d _{5/2}	(42)	964	Ca	(Mg)	1186 Gd 3d-	(32)
526	Dy	(Al)	738	I	(Mg)	971	U	(Mg)	1100 Gu 505/2	(JZ) (A1)
528	Sb 3d5/2	(9)	745	0	(Mg)	101100	1	(Al)	1204 11	(AI)
531	O 1s		758	Nd	(Al)	978	0	(Al)	1217 Ru	(A1)
533	Pd 3p3/2	(27)	767	Sb 3p3/2	(46)	979	Ru	(Mg)	1212 Ru 1217 Ge 2n.,	(31)
551	Fe	(Mg)	772	Те	(Mg)	981	Nd 3dsn	(21)	1223 C	(AI)
561	Ti 2s		778	Co 2p3/2	(15)	990	C	(Mg)	1239 Th	(AI)
564	Pr	(Mg)	781	Ba 3d5/2	(15)	1005	Te	(Al)	K	(AI)
568	Си	(Al)		V	(Mg)	1006	K	(Mg)	1241 Th 3den	(35)
573	Ag 3p _{3/2}	(31)	784	Fe	(Al)		Th	(Mg)	1272 Ar	(JJ)
	Te 3d _{5/2}	(10)	797	Pr	(Al)	1014	V	(Al)	1296 Dv 3d-	(37)
574	Cr 2p _{3/2}	(9)	799	Sb	(Mg)	1022	Zn 2p32	(23)	$1299 M_{0}$	(A1)
599	F	(Mg)	816	Sn	(Mg)	1032	Sb	. (Al)	1303 Mg 1s	(111)
600	Ce	(Mg)	820	Te 3p _{3/2}	(51)	1039	Ar	(Mg)	1304 <i>Cl</i>	(A1)
602	Gd	(Al)	832	F	(Al)	1049	Sn	(Al)	1310 B	(Al)
619	Cd 3p _{3/2}	(34)	833	Ce	(Al)	1068	Ti	(Al)	1319 Nb	(AI)
	I 3d _{5/2}	(12)	835	Tĩ	(Mg)	1071	Cl	(Mg)	1324 As 2pag	(35)
634	La	(Mg)	836	La 3d _{5/2}	(17)	1072	Na 1s	, or	1336 S	(AI)
637	Eu	(Al)	843	In	(Mg)	1076	In	(Al)	1387 Bi	(AI)
639	Mn 2p3/2	(11)	853	Ni 2p3/2	(18)	1077	В	(Mg)	1394 Pb	(AI)
641	Ni	(Al)	863	Ne 1s		1081	Sm 3d _{5/2}	(27)	1401 Tl	(AI)
653	Ba	(Mg)	867	La	(Al)	1086	Nb	(Mg)	1412 Hg	(Al)
665	In 3p _{3/2}	(38)	870	Cd	(Mg)	1103	S	(Mg)	1416 Au	(Al)
667	Mn	(Mg)							1999 (1999) (1995) 1999 (1999)	1

259

Appendix K. Periodic Table

*The values are for area measurements of the designated transitions and are only valid when the electron energy analyzer used has the transmission characteristics of the spherical capacitor type analyzer equipped with an Omni Focus III lens supplied by Perkin-Elmer and with x-rays at 90° relative to the analyzer. Where a spin-orbit splitting is not designated the value is for a measurement including both spin-orbit components.

Perkin-Elmer Corporation Physical Electronics Division

261